赵庄井田产甲烷菌群富集与产气条件优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enrichment of methane bacteria group and optimization of methane production conditions in Zhaozhuang Mining Area
  • 作者:魏国琴 ; 何环 ; 赵娜 ; 宋燕莉 ; 王江泽 ; 韩作颖
  • 英文作者:Wei Guoqin;He Huan;Zhao Na;Song Yanli;Wang Jiangze;Han Zuoying;State Key Laboratory of Coal and Coal-Bed Methane Simultaneous Extraction,Shanxi Jincheng Anthracite Mining Group Co.,Ltd.;Yi'an Lanyan Coal and Coal-Bed Methane Stimultaneous Extraction Technology Co.,Ltd.;China University of Mining and Technology,Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education;
  • 关键词:生物产气 ; 赵庄井田 ; 产甲烷菌群 ; 营养组分 ; 条件优化
  • 英文关键词:biogenic coal bed methane;;Zhaozhuang Mining Area;;methane producing bacteria group;;nutritional components;;condition optimization
  • 中文刊名:ZZMT
  • 英文刊名:China Energy and Environmental Protection
  • 机构:山西晋城无烟煤矿业集团有限责任公司煤与煤层气共采国家重点实验室;易安蓝焰煤与煤层气共采技术有限责任公司;中国矿业大学煤炭加工与高效洁净利用教育部重点实验室;
  • 出版日期:2018-09-26 15:02
  • 出版单位:能源与环保
  • 年:2018
  • 期:v.40;No.273
  • 基金:山西省煤层气联合研究基金项目(2012012013);; 山西省煤基重点科技攻关项目(MQ2014-03)
  • 语种:中文;
  • 页:ZZMT201809006
  • 页数:6
  • CN:09
  • ISSN:41-1443/TK
  • 分类号:28-33
摘要
赵庄煤层气井水中富集产甲烷菌群,可优化产气能力。采用厌氧富集得到本源菌群,通过正交试验优化产气条件。水样中存在产甲烷菌群,实验室条件下最优产气条件:NH_4Cl为1. 0 g/L,K_2HPO_4为1. 5 g/L,MgCl_2为0. 1 g/L,煤粉添加量160 g/L,60 d产甲烷量达18. 07%。赵庄井田产甲烷菌群通过富集可以降解无烟煤产气,通过条件优化可提高其降解无烟煤产气的能力。
        There exists methanogenic bacteria in the water of Zhaozhuang coal seam gas well,and its gas production capacity can be optimized. The original bacteria group was obtained by anaerobic enrichment,and the conditions of gas production were optimized by orthogonal test. Methanogenic bacteria existed in water samples. Under the laboratory conditions,the optimum biogas production conditions were NH_4 Cl: 1. 0 g/L,K_2 HPO_4: 1. 5 g/L,MgCl_2: 0. 1 g/L,and the amount of coal powder added was 160 g/L. The methane yield of 60 d was 18. 07%. The accumulation of native bacteria can make use of anthracite to produce methane,and the gas yield can be improved by optimization.
引文
[1] Park S Y,Liang Y. Biogenic methane production from coal:a review on recent research and development on microbially enhanced coalbed methane(MECBM)[J]. Fuel,2016,166:258-267.
    [2] Gupta P,Gupta A. Biogas production from coal via anaerobic fermentation[J]. Fuel,2014,118:238-242.
    [3]郭红光,王飞,李志刚.微生物增产煤层气技术研究进展[J].微生物学通报,2015,42(3):584-590.Guo Hongguang,Wang Fei,Li Zhigang. Research progress of microbially enhanced coaled methane[J]. Microbiology China,2015,42(3):584-590.
    [4] Susilawati R,Esterle J S,Golding S D,et al. Microbial Methane potential for the south Sumatra basin coal:formation water screening and coal substrate bioavailability[J]. Energy Procedia,2015,65:282-291.
    [5] Jones E J,Voytek M A,Corum M D,et al. Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium[J]. Appl Environ Microbiol,2010,76(21):7013-7022.
    [6]王尚,董海良,侯卫国.微生物在生物煤层气形成中的作用及影响因素研究进展[J].地球与环境,2013,41(4):335-342.Wang Shang,Dong Hailiang,Hou Weiguo. Research Progress on the role of microorganism in the formation of biological coalbed methane and its influencing factors[J]. Earth and Environment,2013,41(4):335-342.
    [7] Thakur N,Khardenavis A,Purohit H J. Recent advances in factors and method for stimulation of biomethane production[J]. Recent Advances in Dna&Gene Sequences,2015,9(1):3-13.
    [8]王艳婷,韩亚新,何环,等.褐煤生物产气影响因素研究[J].煤炭科学技术,2013,41(11):120-128.Wang Yanting,Han Yaxin,He Huan,et al. Study on influencing factors for biogenic gas production in lignite[J]. Coal Science and Technology,2013,41(11):120-128.
    [9] Pandey R,Harpalani S,Feng R,et al. Changes in gas storage and transport properties of coal as a result of enhanced microbial methane generation[J]. Fuel,2016,179:114-123.
    [10]汪涵,林海,董颖博,等.外源产甲烷菌降解褐煤产气实验[J].石油勘探与开发,2012,39(6):764-768.Wang Han,Lin Hai,Dong Yingbo,et al. Experiments on the gas production of brown coal degraded by exogenous methanogens[J].Petroleum Exploration and Development,2012,39(6):764-768.
    [11] Su Xianbo,Wu Yu,Xia Daping,et al. Experimental design schemes for bio-methane production from coal and optimal selection[J]. Natural Gas Industry,2013,33(5):132-136.
    [12] Zhang Ji,Liang Yanna,Pandey Rohit,et al. Characterizing microbial communities dedicated for conversion of coal to methane in situ and exsitu[J]. Internation Journal of Coal Geology,2015,146:145-154.
    [13] Shcherbakova V,Rivkina E,Pecheritsyna S,et al. Methanobacterium arcum sp. nov.,a methanogenic archaeon from Holocene Arctic permafrost[J]. International Journal of Systematic and Evolutionary Microbiology,2011,61(1):144-147.
    [14]肖栋,王恩元,彭苏萍,等.煤体微生物厌氧发酵对裂隙发育的响应规律[J].煤炭学报,2017,42(5):1207-1213.Xiao Dong,Wang Enyuan,Peng Suping,et al. Responses of coal anaerobic fermentation fracture development[J]. Journal of China Coal Society,2017,42(5):1207-1213.
    [15]吴鹏,魏国琴,韩作颖,等.沁水盆地寺河地区煤层水细菌多样性分析[J].生物技术,2017,27(2):161-166.Wu Peng,Wei Guoqin,Han Zuoying,et al. Bacteria diversity in coalbed water at Sihe area of Qinshui Basin[J]. Biotechnology,2017,27(2):161-166.
    [16]刘健,元雪芳,韩作颖,等.沁水盆地寺河矿区煤层水古菌群落结构多样性分析[J].能源与环保,2017,39(9):18-27.Liu Jian,Yuan Xuefang,Han Zuoying,et al. Analysis on archaeal community structure and diversity in coalbed water from Sihe Mining Area in Qinshui Basin[J]. China Energy and Environmental Protection,2017,39(9):18-27.
    [17]杨秀清,吴瑞薇,韩作颖,等.基于mcr A基因的沁水盆地煤层气田产甲烷菌群与途径分析[J].微生物学通报,2017,44(4):795-806.Yang Xiuqing,Wu Ruiwei,Han Zuoying,et al. Analysis of methanogenic bacteria groups and ways of coal bed gas field in Qinshui Basin based on mcr A gene[J]. Microbiology China,2017,44(4):795-806.
    [18] Susilawati R,Evans P N,Esterle J S,et al. Temporal changes in microbial community composition during culture enrichment experiments with Indonesian coal[J]. International Journal of Coal Geology,2015,137(8):66-76.
    [19]王世全,崔玉波,朴永哲,等.基于mcr A基因分析污泥干化芦苇床中产甲烷菌的多样性[J].环境工程学报,2016,10(6):3312-3316.Wang Shiquan,Cui Yubo,Piao Yongzhe,et al. Charterization of methanogens diversity in sludge drying reed bed based on mcr A gene analysis[J]. Chinses Journal of Environmental Engineering,2016,10(6):3312-3316.
    [20]刘建民,胡斌,王保玉,等.利用宏基因组学技术分析煤层水中细菌多样性[J].基因组学与应用生物学,2015,34(1):165-171.Liu Jianmin,Hu Bin,Wang Baoyu,et al. Metagenomic analysis of the diversity of bacteriain coalbed water[J]. Genomics and Applied Biology,2015,34(1):165-171.
    [21] Papendick S L,Downs K R,Vo K D,et al. Biogenic methane potential for Surat Basin,Queensland coal seams[J]. International Journal of Coal Geology,2011,88(2):123-134.
    [22]苏琦,黄欢.全球微生物增产煤层气专利技术发展态势[J].广东化工,2016,43(11):118-119.Su Qi,Huang Huan. Development trend of global microbially enhanced coalbed methane patent technology[J]. Guangdong Chemical Industry,2016,43(11):118-119.
    [23]任付平,韩长胜,王玲欣,等.微生物提高煤层气单井产量技术研究与实践[J].石油钻采工艺,2016,38(3):395-399.Ren Fuping,Han Changsheng,Wang Lingxin,et al. Microbially enhanced CBM well production rate technology and its application[J]. Oil Drilling&Production Technology,2016,38(3):395-399.
    [24]赵贤正,杨延辉,孙粉锦,等.沁水盆地南部高阶煤层气成藏规律与勘探开发技术[J].石油勘探与开发,2016,43(2):303-309.Zhao Xianzheng,Yang Yanhui,Sun Fenjin,et al. Enrichment mechanism and exploration and development technologies of high rank coalbed methane in south Qinshui Basin,Shanxi Province[J]. Petroleum Exploration and Development,2016,43(2):303-309.
    [25] Hongguang Guo,Ruyin Liu,Zhisheng Yu,et al. Pyrosequencing reveals the dominance of methylotrophic methanogenesis in a coal bed methane reservoir associated with Eastern Ordos Basin in China[J]. International Journal of Coal Geology,2012,93(1):56-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700