基于碳纳米纸传感器的复合材料结构低速冲击损伤监测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monitoring of Low-velocity Impact Damage in Composite Structures Based on Carbon Nanotubes’ Buckypaper Sensors
  • 作者:卢少微 ; 杜凯 ; 王晓强
  • 英文作者:LU Shaowei;DU Kai;WANG Xiaoqiang;Department of Materials Science Engineering, Shenyang Aerospace University;Department of Aeronautics and Astronautics, Shenyang Aerospace University;
  • 关键词:材料结构 ; 拉伸 ; 低速冲击 ; 全向碳纳米纸传感器 ; 传感系数 ; 损伤监测
  • 英文关键词:composite structures;;tensile;;low velocity impact;;omnidirectional Buckypaper sensor;;sensing coefficient;;damage monitoring
  • 中文刊名:ZRHT
  • 英文刊名:Manned Spaceflight
  • 机构:沈阳航空航天大学材料科学与工程学院;沈阳航空航天大学航空宇航学院;
  • 出版日期:2019-06-15
  • 出版单位:载人航天
  • 年:2019
  • 期:v.25;No.89
  • 基金:载人航天预先研究项目(17580404)
  • 语种:中文;
  • 页:ZRHT201903011
  • 页数:7
  • CN:03
  • ISSN:11-5008/V
  • 分类号:83-89
摘要
针对复合材料对冲击载荷比较敏感、内部损伤不易发现的问题,提出一种利用碳纳米纸薄膜作应变传感器的复合材料结构件低速冲击损伤监测方法。在拉伸条件下,对圆形和矩形碳纳米纸薄膜进行不同方向的传感系数测试,发现圆形碳纳米纸传感器具有较高且稳定的传感系数155.63,可以作为全向传感器监测冲击损伤。复合材料结构的冲击损伤由传感器的电阻变化率和超声C扫描结果同步表征。研究结果表明,传感器的电阻随着冲击能量的增加而增加,基于全向碳纳米纸传感器的结构健康监测不仅可以灵敏感知低速冲击损伤,为损伤程度评估提供客观数据,而且通过分析不同方向BP传感器的电阻变化可以判断损伤位置。进一步与传统C扫描结果相比较表明,全向碳纳米纸传感器可以有效预判低速冲击损伤,用于航空航天复合材料结构件的实时在线健康监测。
        A monitoring method for low-velocity impact damage in composite structures based on carbon nanotubes' Buckypapers(BP) as strain sensor was proposed in this paper. The sensing coefficients of circular and rectangular BP in different tensile directions were measured. The results showed that the circular BP sensor had a steady sensing coefficient of 155.63 which could serve as an omnidirectional sensor to monitor the impact damage. The resistance change ratio of omnidirectional BP sensors and the results of C scanning were synchronous characterization of the low-velocity impact damage of the composite structures. The experiment results showed that the electrical resistance of omnidirectional BP sensors increased with increase of the impact loading. The structure monitoring based on omnidirectional BP sensor was sensitive to impact damage and could provide objective data for the evaluation of the damage in composite structures. In addition, the location of damage could be determined by analyzing the resistance changes of BP sensor in different directions. Comparing with the results of traditional C-scan, the omnidirectional CNTs Buckypaper sensor could efficiently predict the low-velocity impact damage and may be applied in real time health monitoring of composite structures in spacecraft.
引文
[1] Diamanti K,Soutis C.Structural health monitoring techniques for aircraft composite structures[J].Progress in Aerospace Sciences,2010,46(8):342-352.
    [2] Kadlec M,Rek R.A comparison of laser shearography and C-scan for assessing a glass/epoxy laminate impact damage[J].Applied Composite Materials,2012,19(3-4):393-407.
    [3] Cheng X Q,Kou C H,Li Z N.Compressive failure behavior of composite laminates after low velocity impact[J].Acta Materiae Compositae Sinica,2001,18(1):115-119.
    [4] Takeda S,Okabe Y,Takeda N.Monitoring of delamination growth in CFRP laminates using chirped FBG sensors[J].Journal of Intelligent Material Systems & Structures,2008,19(19):437-444.
    [5] Fu T,Liu Y,Li Q,et al.Fiber optic acoustic emission sensor and its applications in the structural health monitoring of CFRP materials[J].Optics and Lasers in Engineering,2009,47(10):1056-1062.
    [6] Jang B W,Kim C G.Real-time detection of low-velocity impact-induced delamination onset in composite laminates for efficient management of structural health[J].Composites Part B Engineering,2017,123:124-135.
    [7] Yashiro S,Takeda N,Okabe T,et al.A new approach to predicting multiple damage states in composite laminates with embedded FBG sensors[J].Composites Science & Technology,2005,65(3-4):659-667.
    [8] Song G,Olmi C,Gu H.An overheight vehicle-bridge collision monitoring system using piezoelectric transducers[J].Smart Material Structures,2007,16(2):462-468.
    [9] Li C,Thostenson E T,Chou T W.Dominant role of tunneling resistance in the electrical conductivity of,carbon nanotube-based composites[J].Applied Physics Letters,2007,91(22):2837.
    [10] Wang X,Sparkman J,Gou J.Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling[J].Composites Communications,2017,3:1-6.
    [11] Sebastian J,Schehl N,Bouchard M,et al.Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors[J].Carbon,2014,66:191-200.
    [12] Nofar M,Hoa S V,Pugh M,et al.Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks[J].Composites Science and Technology,2009,69(10):1599-1606.
    [13] Gao L,Thostenson E T,Zhang Z,et al.Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites[J].Carbon,2009,47(5):1381-1388.
    [14] Zeng Z,Liu M,Xu H,et al.Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites[J].Carbon,2017,121:490-501.
    [15] Alexopoulos N D,Bartholome C,Poulin P,et al.Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers[J].Composites Science and Technology,2010,70(2):260-271.
    [16] Li C,Chou T W.Modeling of damage sensing in fiber composites using carbon nanotube networks[J].Composites Science and Technology,2008,68(15-16):3373-3379.
    [17] Kumar S S,Ravisankar B.Evaluation of quality diffusion bonding in similar material (Cu/Cu) using ultrasonic C scan testing method[J].Applied Mechanics and Materials,2014,592:289-293.
    [18] Zhao J,Wang G,Yang R,et al.Tunable piezoresistivity of nanographene films for strain sensing[J].Acs Nano,2015,9(2):1622-1629.
    [19] Zeng Z,Liu M,Xu H,et al.Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites[J].Carbon,2017,121:490-501.
    [20] Boland C S,Khan U,Ryan G,et al.Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites[J].Science,2016,354(6317):1257-1260.
    [21] Hu N,Karube Y,Arai M,et al.Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor[J].Carbon,2010,48(3):680-687.
    [22] Oliva-Avilés A I,Avilés F,Sosa V.Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field[J].Carbon,2011,49(9):2989-2997.
    [23] Gao L,Chou T W,Thostenson E T,et al.In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks[J].Carbon,2011,49(10):3382-3385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700