静电纺聚丙烯腈/石墨烯碳纳米纤维的结构与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure and properties of electrospun polyacrylonitrile/graphene carbon nanofibers
  • 作者:田银彩 ; 张浩鹏 ; 李博琛 ; 康广杰 ; 李根宇
  • 英文作者:TIAN Yincai;ZHANG Haopeng;LI Bochen;KANG Guangjie;LI Genyu;Department of Material and Chemical Engineering, Henan Institute of Engineering;
  • 关键词:聚丙烯腈 ; 石墨烯 ; 静电纺丝 ; 预氧化处理 ; 炭化处理
  • 英文关键词:polyacrylonitrile;;graphene;;electrospinning;;preoxidation treatment;;carbonization treatment
  • 中文刊名:FZXB
  • 英文刊名:Journal of Textile Research
  • 机构:河南工程学院材料与化学工程学院;
  • 出版日期:2018-10-15
  • 出版单位:纺织学报
  • 年:2018
  • 期:v.39;No.391
  • 基金:“纺织新产品开发”河南省工程实验室2016年度开放基金项目(GCSYS201610)
  • 语种:中文;
  • 页:FZXB201810005
  • 页数:8
  • CN:10
  • ISSN:11-5167/TS
  • 分类号:29-36
摘要
为研究石墨烯和不同预氧化条件对碳纳米纤维结构的影响,采用静电纺丝法制备了聚丙烯腈(PAN)/石墨烯纳米纤维,然后通过预氧化和炭化处理获得碳纳米纤维。借助傅里叶红外变换光谱仪、X射线衍射仪、差示扫描量热仪、激光显微拉曼光谱仪和扫描电子显微镜研究预氧化丝和碳纳米纤维的结构变化。结果表明:预氧化处理过程中,PAN分子发生脱氢、环化和氧化反应,最终形成稳定的梯形结构;随着预氧化温度的升高,PAN纤维的相对环化率、芳构化指数和环化度逐渐提高;石墨烯的加入提高了碳纳米纤维的石墨化程度,对脱氢、环化反应有一定的抑制作用,从而降低碳纳米纤维的断裂程度;当预氧化温度为260℃时,新的纤维结构已基本形成。
        In order to study the effect of graphene addition and different preoxidation conditions on the structure of pre-oxidized fibers and carbon nanofibers, polyacrylonitrile(PAN) nanofibers were prepared by electrospinning. And then carbon nanofibers were obtained by preoxidation and carbonization. Finally, the structural change of pre-oxidized fibers and carbon nanofibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, Raman spectrometer and scanning electron microscopy. The results show that a stable trapezoidal structure is formed by the dehydrogenation, cyclization and oxidization reactions of PAN molecules during the preoxidation process. The relative cyclization rate, aromatization index and degree of cyclization of PAN fibers gradually increase with the rise of preoxidation temperature. The addition of graphene improves the graphitization degree of carbon nanofibers and has a certain inhibition effect on the dehydrogenation and cyclization reaction. Therefore, the fracture degree of carbon nanofibers reduces. When the preoxidation temperature is 260 ℃, a new structure of the fibers is substantially formed.
引文
[1] 迟长龙, 杨柳, 梁真真. 聚丙烯腈基多孔碳纳米纤维的制备及其结构与性能研究[J]. 合成纤维工业, 2016, 39(5): 28-32.CHI Changlong, YANG Liu, LIANG Zhenzhen. Study on preparation and structural properties of polyacrylonitrile-based porous carbon nanofibers [J]. China Synthetic Fiber Industry, 2016, 39(5): 28-32.
    [2] NOVOSELOV K S, GEIM A K, MOROZOV S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
    [3] 陈宜波, 陈友汜, 欧阳琴. 聚丙烯腈/石墨烯纳米复合物的制备、表征及其热性能[J]. 功能材料, 2012, 17(43): 2312-2316.CHEN Yibo, CHEN Youshi, OU Yangqin. Preparation, characterization and thermal property of polyacrylonitrile/graphene nanocomposites [J]. Journal of Functional Materials, 2012, 17(43): 2312-2316.
    [4] 张平, 张金宁, 王清清. 聚丙烯腈/氧化石墨烯复合纳米纤维的制备与性能研究[J]. 高分子通报, 2013(7): 56-61.ZHANG Ping, ZHANG Jinning, WANG Qingqing. Preparation and properties of polyacrylonitrile/graphene oxide composite nanofibers[J]. Polymer Bulletin, 2013 (7): 56-61.
    [5] 余改丽, 张弘楠, 覃小红, 等. 石墨烯/PAN纳米复合膜的制备及其力学性能[J]. 东华大学学报(自然科学版), 2017, 43(3): 309-315.YU Gaili, ZHANG Hongnan, QIN Xiaohong, et al. Preparation and mechanical property of graphene/PAN composite membrane[J]. Journal of Donghua Univer-sity (Natural Science Edition), 2017, 43(3): 309-315.
    [6] WANG Qingqing, DU Yuanzhi, FENG Quan. Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning[J]. Journal of Applied Polymer Science, 2013, 128(2): 1152-1157.
    [7] 余改丽, 张弘楠, 张娇娇. 高效低阻聚丙烯腈/石墨烯纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2017, 38(2): 26-33.YU Gaili, ZHANG Hongnan, ZHANG Jiaojiao. Preparation and antibacterial property of high-efficiency low-resistance polyacrylonitrile/graphene nanofiber membrane for gas filtration[J]. Journal of Textile Research, 2017, 38(2): 26-33.
    [8] LEE J, YOON J, KIM J H, et al. Electrospun PAN-GO composite nanofibers as water purification mem-branes[J]. Journal of Applied Polymer Science, 2017, 135(7): 458-468.
    [9] 施其权, 吴焕岭, 权静. 湿法纺丝制备聚丙烯腈/氧化石墨烯复合纤维及其抗紫外性能研究[J]. 化工新型材料, 2017, 45(1): 115-117.SHI Qiquan, WU Huanling, QUAN Jing. Preparation and ultraviolet resistant performance of polyacrylonitrile/graphene oxide composite fiber by wet spinning[J]. New Chemical Materials, 2017, 45(1): 115-117.
    [10] ZHANG Jianqiang, PAN Xinglong, XUE Qingzhong. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion[J]. Journal of Membrane Science, 2017(532): 38-46.
    [11] 孔庆强, 杨芒果, 陈成猛, 等. 石墨烯改性聚丙烯腈基纳米炭纤维的制备及其性能[J]. 新型炭材料, 2012, 27(3): 188-193.KONG Qingqiang, YANG Mangguo, CHEN Chengmeng, et al. Preparation and characterization of graphene-reinforced polyacrylonitrile-based carbon nanofibers[J]. New Carbon Materials, 2012, 27(3): 188-193.
    [12] GERGI N I, ISMAR E, SARAC A S. Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide: a spectroscopic and electrochemical study[J]. Beilstein Journal of Nanotechnology, 2017(8): 1616-1628.
    [13] KIM B H, YANG K S. Structure and electrochemical propertied of electrospun carbon fiber composites containing graphene[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3474-3479.
    [14] 雷帅, 张校, 钟珊, 等. 聚丙烯腈热稳定化纤维的裂解行为[J]. 材料工程, 2017, 45(5): 59-63.LEI Shuai, ZHANG Xiao, ZHONG Shan, et al. Degradation behavior of thermal stabilized polyacrylonitrile fibers[J]. Journal of Materials Engineering, 2017, 45(5): 59-63.
    [15] 温月芳, 李辉, 曹霞, 等. 聚丙烯腈纤维预氧化程度的表征[J]. 纺织学报, 2008, 29(12): 1-5.WEN Yuefang, LI Hui, CAO Xia, et al. Evaluation of preoxidation extent of polyacrylonitrile fibers[J]. Journal of Textile Research, 2008, 29(12): 1-5.
    [16] 张旺玺, 刘杰, 吴刚. 聚丙烯腈原丝的预氧化[J]. 合成技术及应用, 2003, 18(4): 23-30.ZHANG Wangxi, LIU Jie, WU Gang. Preoxidation of polyacrylonitrile precursors for resultant carbon fibers[J]. Synthetic Technology and Application, 2003, 18(4): 23-30.
    [17] 卢伟. PAN纤维预氧化过程的研究及其环化竞争过程的探讨[D]. 北京: 北京化工大学, 2011: 24-26.LU Wei. Study of PAN fiber pre-oxidation process and discussion of PAN fiber cyclization competition process[D]. Beijing: Beijing University of Chemical Technology, 2011: 24-26.
    [18] 魏昆. 聚丙烯腈基碳纤维预氧化工艺研究[D]. 北京: 北京化工大学, 2010: 24-25.WEI Kun. Study of PAN-based carbon fiber preoxidation processing[D]. Beijing: Beijing University of Chemical Technology, 2010: 24-25.
    [19] CHATTERJEE N, BASU S, PALIT S K. XRD characterization of the thermal degradation polyacry-lonitrile[J]. Journal of Polymer Science: Part B: Polymer Physics, 1995, 33(16): 1750-1712.
    [20] GUPTA A K, PALIWAL D K. Acrylic precursors for carbon fibers[J]. Macromolecular Chemistry and Physics, 1991, 31(1): 1-89.
    [21] HIDETO K, KOHJI T. Mechanism and kinetics of stabilization reactions of polyacrylonitrile and related copolymers: Ⅳ: effects of atmosphere on isothermal DSC thermograms and FTIR spectral changes during stabilization reaction of acrylonitrile/methacrylic acid copolymer[J]. Polymer Journal, 1998, 30(6): 463-469.
    [22] 余阳, 周美华, 薛刚. PAN基静电纺纳米纤维毡的预氧化、碳化研究[J]. 材料导报, 2009, 23(20): 111-114.YU Yang, ZHOU Meihua, XUE Gang. Study on process of preoxidation and carbonization for PAN-based electrospinning carbon nanofiber mat[J]. Materials Review, 2009, 23(20): 111-114.
    [23] KO T H, CHEN C Y. Raman spectroscopic study of the mincrostructure of carbon films developed from cobalt chloride modified polyacrylonitrile[J]. Journal of Apply Polymer Science, 1999, 7(1): 19-22.
    [24] 于晓强, 庄光山, 丁洪太, 等. 聚丙烯腈基碳纤维预氧化过程中环构化机理[J]. 山东工业大学学报, 1995, 25(4): 301-305.YU Xiaoqiang, ZHUANG Guangshan, DING Hongtai, et al. Investigation on the mechanism of cyclization during pre-oxidation of PAN-based carbon fiber[J]. Journal of Shandong University of Technology, 1995, 25(4): 301-305.
    [25] 杨于兴, 汪嘉荣, 刘常林. 碳纤维的X射线显微结构分析[J]. 上海交通大学学报, 1988, 27(5): 46-49.YANG Yuxing, WANG Jiarong, LIU Changlin. X-ray microstructural analysis of carbon fibres[J]. Journal of Shanghai Jiaotong University, 1988, 27(5): 46-49.
    [26] 王浩静, 王红飞, 李东风, 等. 石墨化温度对炭纤维微观结构及其力学性能的影响[J]. 新型炭材料, 2005, 20(2): 157-163.WANG Haojing, WANG Hongfei, LI Dongfeng, et al. The effect of graphitization temperature on the microstructure and mechanical properties of carbon fibers[J]. New Carbon Materials, 2005, 20(2): 157-163.
    [27] NILIEL L, JAGODZINSKI P W. Raman spectroscopic characterization of graphites: a re-evaluation of spectra structure correlation[J]. Carbon, 1993, 31(8): 1313-1317.
    [28] 张新, 马雷, 李常清, 等. PAN基碳纤维微观结构特征的研究[J]. 北京化工大学学报, 2008, 35(5): 57-58.ZHANG Xin, MA Lei, LI Changqing, et al. Study of the microstructure of PAN-based carbon fibers[J]. Journal of Beijing University of Chemical Technology, 2008, 35(5): 57-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700