环境侧风及大气逆温作用下的AP1000核电机组间接空冷系统热力特性的数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Study on Thermodynamic Characteristics of Indirect Dry Cooling System for AP1000 Nuclear Power Plant Under Environmental Crosswind and Temperature Inversion
  • 作者:王海 ; 梅雪松 ; 王海 ; 顾红芳 ; 陈祖茂 ; 宋江文
  • 英文作者:WANG Haitao;MEI Xuesong;WANG Haijun;GU Hongfang;CHEN Zumao;SONG Jiangwen;Xi'an Jiaotong University;Northwest Electric Power Design Institute Co.Ltd.of China Power Engineering Consulting Group;
  • 关键词:AP1000核电机组 ; 间接空冷塔 ; 环境侧风 ; 大气逆温 ; 热力特性 ; 数值模拟
  • 英文关键词:AP1000 nuclear power plant;;indirect dry cooling tower;;crosswind;;temperature inversion;;thermodynamic characteristic;;numerical simulation
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:西安交通大学;中国电力工程顾问集团西北电力设计院有限公司;
  • 出版日期:2019-02-20
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.615
  • 基金:国家自然科学基金项目(11675128)~~
  • 语种:中文;
  • 页:ZGDC201904016
  • 页数:9
  • CN:04
  • ISSN:11-2107/TM
  • 分类号:173-181
摘要
开展间接空冷技术在内陆缺水地区核电机组上的应用研究具有前瞻性和必要性。以内陆缺水场址建设AP1000核电机组为例,对环境侧风及大气逆温作用下常规岛间冷塔的热力特性进行深入研究,通过数值模拟,获得不同环境风速和逆温温差下,间冷塔散热量、通风量以及机组背压的变化规律。结果表明,在环境风速4~8m/s区间内,间冷塔的散热量和通风量均随风速增加而降低,机组背压随风速增加而升高。在近地面50~500m的逆温层内,间冷塔的散热量随逆温温差增加而下降,机组背压随逆温温差增加而升高,变化趋势近似成线性关系。大气逆温层温差变化1℃时对间冷塔热力性能的影响小于侧风风速变化1m/s的影响,当逆温温差4℃时,对间冷塔冷却效果的影响相当于侧风风速等于6m/s的影响。研究结果可以为AP1000核电机组间接空冷系统的设计提供参考依据。
        The research of applying indirect air cooling technology in inland nuclear power plant is necessary with good prospects. The thermodynamic characteristics of AP1000 indirect dry cooling tower under environmental crosswind and temperature inversion is discussed in depth. Change regularity of heat dissipation, air flow rate and back pressure of indirect cooling tower at different ambient conditions are obtained by numerical simulations. The results show that in the range of4 m/s~8 m/s, the heat dissipation and air flow rate become deteriorated with increasing the wind speed, resulting in the increased back pressure. In the temperature inversion layer of50-500 m near the ground, the heat dissipation decreases with increasing the temperature difference, and the back pressure of the unit increases with the increase of the temperature difference. The influence of the temperature inversion layer on the thermodynamic characteristics of AP1000 indirect dry cooling tower is less than that of the cross wind speed. When the temperature difference is 4℃, the effect on cooling efficiency of AP1000 indirect dry cooling tower is equivalent to that of cross wind speed 6 m/s. The present study can provide the beneficial reference for the design of indirect air cooling system for AP1000 nuclear power plant.
引文
[1]叶奇蓁.后福岛时期我国核电的发展[J].中国电机工程学报,2012,32(11):1-8.Ye Qizhen.China’s nuclear power development after fukushima nuclear power plant accident[J].Proceedings of the CSEE,2012,32(11):1-8(in Chinese).
    [2]王韶伟,陈海英,林权益,等.国外内陆核电状况及我国内陆核电建设亟待解决的问题[J].辐射防护,2013,33(6):390-396.Wang Shaowei,Chen Haiying,Lin Quanyi,et al.Introduction to Inland Nuclear Power Abroad and Issues to be Solved in China[J].Radiation Protection,2013,33(6):390-396(in Chinese).
    [3]柴靖宇.间接空冷技术在AP1000核电站常规岛应用研究[C]//2010年中国电机工程学会年会论文集.海口:中国电机工程学会,2010.Chai Jingyu.Application of indirect air cooling technology in conventional island of AP1000 nuclear power plant[C]//Annual meeting of the Chinese Society for Electrical Engineering.Haikou:Chinese Society of Electrical Engineering,2010(in Chinese).
    [4]卜永东,杨立军,杜小泽,等.电站空冷技术[J].现代电力,2013,30(3):69-79.Bu Yongdong,Yang Lijun,Du Xiaoze,et al.Review of dry cooling technologies in power plants[J].Modern Electric Power,2013,30(3):69-79(in Chinese).
    [5]龙时磊,曾建荣,刘可,等.逆温层在上海市空气颗粒物积聚过程中的作用[J].环境科学与技术,2013,36(6L):104-109.Long Shilei,Zeng Jianrong,Liu Ke,et al.Impact of temperature inversion layer on accumulation process of particulate matters in Shanghai[J].Environmental Science&Technology,2013,36(6L):104-109(in Chinese).
    [6]席新铭.大型间接空冷塔空气流动特性及流场优化研究[D].北京:华北电力大学,2015.Xi Xinming.Study on air flow characteristics and optimization for large scale dry cooling tower[D].Beijing:North China Electric Power University,2015(in Chinese).
    [7]Du Preez A F,Kr?ger D G.Effect of wind on performance of a dry-cooling tower[J].Heat Recovery Systems and CHP,1993,13(2):139-146.
    [8]Du Preez A F,Kr?ger D G.The effect of the heat exchanger arrangement and wind-break walls on the performance of natural draft dry-cooling towers subjected to cross-winds[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,58(3):293-303.
    [9]Su M D,Tang G F,Fu S.Numerical simulation of fluid flow and thermal performance of a dry-cooling tower under cross wind condition[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,79(3):289-306.
    [10]Al-Waked R,Behnia M.The performance of natural draft dry cooling towers under crosswind:CFD study[J].International Journal of Energy Research,2004,28(2):147-161.
    [11]刘志云,王栋,林宗虎.侧向风对自然通风直接空冷塔性能影响的数值分析[J].动力工程学报,2008,28(6):915-919.Liu Zhiyun,Wang Dong,Lin Zonghu.Numerical analysis of the influence of side wind on the performance of the direct air cooling tower with natural ventilation[J].Journal of Power Engineering,2008,28(6):915-919(in Chinese).
    [12]Goodarzi M.A proposed stack configuration for dry cooling tower to improve cooling efficiency under crosswind[J].Journal of Wind Engineering and Industrial Aerodynamics,2010,98(12):858-863.
    [13]石磊,石诚,汤东升,等.间接空冷散热器及空冷钢塔流动和传热数值研究[J].华东电力,2012,40(4):663-666.Shi Lei,Shi Cheng,Tang Dongsheng,et al.Numerical research on flow and heat transfer characteristics of air cooling steel tower with surface indirect air cooled radiator[J].East China Electric Power,2012,40(4):663-666(in Chinese).
    [14]Yang L J,Chen L,Du X Z,et al.Effects of ambient winds on the thermo-flow performances of indirect dry cooling system in a power plant[J].International Journal of Thermal Sciences,2013,64:178-187.
    [15]Goodarzi M,Keimanesh R.Heat rejection enhancement in natural draft cooling tower using radiator-type windbreakers[J].Energy Conversion and Management,2013,71(3):120-125.
    [16]Gu Hongfang,Wang Haijun,Gu Yuqian,et al.Anumerical study on the mechanism and optimization of wind-break structures for indirect air-cooling towers[J].Energy Conversion and Management,2016,108:43-49.
    [17]王卫良,倪维斗,王哲,等.间接空冷塔受侧风影响研究综述[J].中国电机工程学报,2015,35(4):882-890.Wang Weiliang,Ni Weidou,Wang Zhe,et al.A review on the research of a dry cooling tower affected by cross wind[J].Proceedings of the CSEE,2015,35(4):882-890(in Chinese).
    [18]中华人民共和国住房和城乡建设部.GB/T 50102-2014工业循环水冷却设计规范[S].北京:中国计划出版社,2015.Ministry of Housing and Urban-Rural Construction of the People's Republic of China.GB/T 50102-2014 Code for design of cooling for industrial recirculating water[S].Beijing:China Planning Press,2015(in Chinese).
    [19]李鹏,田景奎.不同下垫面近地层风速廓线特征[J].资源科学,2011,33(10):2005-2010.Li Peng,Tian Jingkui.Characteristics of surface layer wind speed profiles over different underlying surfaces[J].Resources Science,2011,33(10):2005-2010(in Chinese).
    [20]中华人民共和国住房和城乡建设部.GB 50009-2012建筑结构荷载规范[S].北京:中国建筑工业出版社,2012.Ministry of Housing and Urban-Rural Construction of the People's Republic of China.GB 50009-2012 Load code for the design of building structures[S].Beijing:China Architecture&Building Press,2012(in Chinese).
    [21]王志军,宋立军.利用遗传算法求大气压强精确公式[J].长春大学学报,2001,11(5):31-33.Wang Zhijun,Song Lijun.Evaluating precise formula of at mospheric pressure by using genetic algorithms[J].Journal of Changchun University,2001,11(5):31-33(in Chinese).
    [22]陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2001:28-44.Tao Wenquan.Numerical heat transfer[M].2nd ed.Xi'an:Xi'an Jiao Tong University Press,2001:28-44(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700