超支化聚合物增韧增强的自修复环氧Vitrimer
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hyperbranched Polymer Toughened and Reinforced Self-healing Epoxy Vitrimer
  • 作者:黄鑫 ; 刘汉超 ; 樊正 ; 王豪 ; 黄光速 ; 吴锦荣
  • 英文作者:Xin Huang;Han-chao Liu;Zheng Fan;Hao Wang;Guang-su Huang;Jin-rong Wu;State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University;
  • 关键词:环氧树脂Vitrimer ; 酯交换反应 ; 超支化聚合物 ; 增韧 ; 自修复
  • 英文关键词:Epoxy vitrimer;;Transesterification reaction;;Hyperbranched polymer;;Toughening;;Self-healing
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:四川大学高分子科学与工程学院高分子材料工程国家重点实验室;
  • 出版日期:2019-04-11 16:08
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家科技重大专项(项目号2016ZX05017-002)资助
  • 语种:中文;
  • 页:GFXB201905011
  • 页数:8
  • CN:05
  • ISSN:11-1857/O6
  • 分类号:116-123
摘要
针对环氧树脂Vitrimer脆性大和强度低的缺点,采用羧酸封端的超支化聚合物Hyper C102来增强增韧戊二酸固化的双酚F环氧树脂(BPF).傅里叶红外线光谱(FTIR)测试和溶胀实验证明了环氧树脂Vitrimer中共价交联网络的形成.示差扫描量热法(DSC)和动态热机械性能分析(DMA)测试材料的酯交换速率和动态力学性能,发现Hyper C102改性的环氧树脂Vitrimer在高温下仍然可以发生高效率的酯交换反应,材料的模量可在30 min内松弛到初始模量的1/e.力学性能测试表明Hyper C102改性环氧树脂Vitrimer的拉伸强度和断裂能分别提高了136%和504%,并拥有着良好的自修复和可重复加工性能.因此,采用羧酸封端的超支化聚合物改性不仅可以保持环氧树脂Vitrimer的动态酯交换特性,还可以极大地改善其力学性能.
        Unlike conventional thermoset epoxy resins, epoxy vitrimers with excellent malleability can be recycled, remolded and reshaped. However, most epoxy vitrimers usually shows high fragility and low mechanical properties, which significantly limits their practical applications. To address this issue, we used a carboxyl terminated hyperbranched polymer, Hyper C102, to simultaneously toughen and reinforce a class of vitrimers based on glutaric acid crosslinked bisphenol F epoxy resin(BPF), in which 1-methylimidazole was used as catalyst to endow the system with dynamic exchange properties. Fourier transform(FTIR) and swelling experiments confirmed the formation of covalent crosslinking network in the epoxy vitrimers. DSC and DMA were used to study the dynamic mechanical properties and the rate of transesterification reaction of the materials.The result shows that the crosslink density of the epoxy vitrimers decreases first and then increases with the increasing content of Hyper C102. Such phenomenon can be well explained by the cavitation theory. More intriguingly, the Hyper C102 modified epoxy vitrimers still show high efficiency of transesterification reaction at180 °C. Their modulus can relax to 1/e of the initial modulus within 30 min, and to 10% of the initial modulus within 1 h. Meanwhile, the tensile strength and strain at break can be simultaneously improved upon the introduction of Hyper C102. Compared with Hyper0 which contains no hyperbranched polymer, the tensile strength and fracture energy of Hyper7.5 that contains 7.5 wt% Hyper C102 is improved by 136%(from 28 MPa to 66 MPa) and 504%(from 280 kJ/m3 to 1410 kJ/m3), respectively. Such significant and simultaneous improvement in both tensile strength and toughness has not been realized in previous studies. Moreover, the epoxy vitrimers manifest decent self-repairing and recyclable properties after mechanical damage. These results fully demonstrate that the addition of the carboxyl terminated hyperbranched polymer can not only maintain the dynamic transesterification, but also significantly improve the mechanical properties of epoxy vitrimers.
引文
1Chen Ping(陈平),Liu Shengping(刘胜平),Wang Dezhong(王德中).Epoxy Resin and Its Applications(环氧树脂及其应用).Beijing(北京):Chemical Industry Press(化学工业出版社),2011.1-5
    2Min D,Zhou W,Qing Y.J Mater Sci,2017,52(4):2373-2383
    3Zhao Hanwen(赵翰文),Feng Libang(冯利邦),Shi Xueting(史雪婷).Acta Polymerica Sinica(高分子学报),2018,(3):395-401
    4Zhao Mengxue(赵梦雪),Kong Miqiu(孔米秋),Liu Chengjun(刘成俊).Acta Polymerica Sinica(高分子学报),2018,(6):721-732
    5Liu H,Zhang H,Wang H,Huang X,Huang G,Wu J.Chem Eng J,2019,368:61-70
    6Montarnal D,Capelot M,Tournilhac F,Leibler L.Science,2011,334(6058):965-968
    7Legrand A,Souliéziakovic C.Macromolecules,2016,49(16):5893-5902
    8Capelot M,Montarnal D,Tournilhac F,Leibler L.J Am Chem Soc,2012,134(18):7664-7667
    9Brutman J P,Delgado P A,Hillmyer M A.ACS Macro Lett,2014,3(7):607-610
    10Demongeot A,Groote R,Goossens H,Hoeks T,Tournilhac F,Leibler L.Macromolecules,2017,50(16):6117-6127
    11Denissen W,Rivero G,Nicola?R,Leibler L,Winne J M.Adv Funct Mater,2015,25(16):2451-2457
    12Fortman D J,Brutman J P,Cramer C J,Hillmyer M A,Dichtel W R.J Am Chem Soc,2015,137(44):14019
    13Lu Y X,Tournilhac F,Leibler L,Guan Z.J Am Chem Soc,2012,134(20):8424
    14Lu Y X,Guan Z.J Am Chem Soc,2012,134(34):14226-14231
    15Obadia M M,Mudraboyina B P,Serghei A,Montarnal D,Drockenmuller E.J Am Chem Soc,2015,137(18):6078-6083
    16Zhang Xi(张希).Acta Polymerica Sinica(高分子学报),2016,(6):685-687
    17Alaitz R D L,Martin R,Markaide N,Rekondo A,Cabanero G,Rodriguez J,Odriozola I.Mater Horiz,2016,3(3):241-247
    18Chabert E,Vi al J,Cauchois J P,Tournihac F.Soft Matter,2016,12(21):4838-4845
    19Yang Y,Pei Z,Zhang X,Tao L,Wei Y,Ji Y.Chem Sci,2014,5(9):3486-3492
    20Boogh L,Pettersson B,Manson J A E.Polymer,1999,40:2249-2261
    21Oh J H,Jang J,Lee S H.Polymer,2001,42(20):8339-8347
    22Okazaki M,Murota M,Kawaguchi Y,Tsubokawa N.J Appl Polym Sci,2001,80(4):573-579
    23Altuna F I,Hoppe C E,Williams R J J.RSC Adv,2016,6(91):88647-88655
    24Hu W,Ren Z,Li J,Askounis E,Xie Z,Pei Q.Adv Funct Mater,2015,25(30):4827-4836
    25Bao C,Guo Z,Sun H,Sun J.ACS Appl Mater Interfaces,2019,11(9):9478-9486
    26Ratna D,Varley R,Singh Raman R K.J Appl Polym Sci,2003,38:147-154
    27Capelot M,Unterlass M M,Tournilhac F,Leibler L.ACS Macro Lett,2012,1(7):789-792
    28Altuna F I,Pettarin V,Williams R J J.Green Chem,2013,15(12):3360-3366
    29Pei Z,Yang Y,Chen Q,Terentjev E M,Wei Y,Ji Y.Nat Mater,2014,13(1):36-41
    30Yu K,Taynton P,Zhang W,Dunn M L,Qi H J.RSC Adv,2014,4(89):48682-48690

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700