焙烧温度对CuMgAl催化剂催化糠醇加氢制戊二醇的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol
  • 作者:卫彩云 ; 谭静静 ; 夏晓丽 ; 赵永祥
  • 英文作者:WEI Caiyun;TAN Jingjing;XIA Xiaoli;ZHAO Yongxiang;Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering,Shanxi University;
  • 关键词:糠醇 ; 1 ; 2-戊二醇 ; 1 ; 5-戊二醇 ; 加氢 ; 类水滑石
  • 英文关键词:furfuryl alcohol;;1,2-pentanediol;;1,5-pentanediol;;hydrogenation;;LDHs
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:山西大学化学化工学院精细化学品教育部工程研究中心;
  • 出版日期:2019-01-08 11:00
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:山西省面上青年基金项目(201701D221030);; 国家自然科学基金青年科学基金项目(21703275)
  • 语种:中文;
  • 页:HGSZ201904020
  • 页数:11
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:174-184
摘要
采用共沉淀法制得物质的量比为n (Cu~(2+))∶n (Mg~(2+))∶n (Al3+)=10∶65∶25的CuMgAl类水滑石前体(CMA-HT),经过不同温度焙烧制得CuMgAl水滑石催化剂。通过傅里叶变换红外光谱(FTIR)、热重分析(TG)、X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N_2-物理吸附、程序升温还原(H_2-TPR)、H_2-程序升温脱附(H_2-TPD)、CO_2-程序升温脱附(CO_2-TPD)和NH_3-程序升温脱附(NH_3-TPD)等对催化剂的结构进行表征,在高压反应釜中考察了CuMgAl水滑石催化剂催化糠醇(FFA)加氢制1,2-戊二醇(1,2-PeD)和1,5-戊二醇(1,5-PeD)的催化性能。研究结果表明,焙烧温度对催化剂的结构及其催化性能具有显著的影响,金属活性中心和碱性位随焙烧温度的升高先增加后减少。经600℃焙烧的CMA催化剂表面存在适宜的金属中心和碱性位,在金属位和碱性中心的协同催化下,表现出了优异的催化性能。在140℃,H_2压力为4MPa的条件下,反应8 h,糠醇的转化率和戊二醇的收率分别达74.13%和58.36%。
        The CuMgAl hydrotalcite-type(CMA-HT) precursors was prepared by co-precipitation process, in which the molar ratio of n(Cu~(2+))∶ n(Mg~(2+))∶ n(Al3+) was 10∶ 65∶ 25. The CuMgAl hydrotalcite catalysts were obtained by calcining at various temperatures. The catalysts were characterized by Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG), X-ray powder diffraction(XRD), scanning electron microscope(SEM), transmission electron microscope(TEM), N_2-adsorption, H_2-temperature programmed reduction(H_2-TPR), H_2-temperature programmed desorption(H_2-TPD), CO_2-temperature programmed desorption(CO_2-TPD)and NH_3-temperature programmed desorption(NH_3-TPD). The catalytic performance of CMA catalysts for the hydrogenation of furfuryl alcohol to 1,2-pentanediol and 1,5-pentanediol were investigated in the autoclave. The results indicated that the calcination temperatures had significantly influence on the structure and catalytic activity of the catalyst. The metal sites and basic sites increased firstly and then decreased with rising the calcined temperatures. The sample calcined at 600℃ possesses the suitable metal and basic sites. It exhibited the superior activity for the hydrogenolysis of furfuryl alcohol as the synergistic effect between the surface metal sites and the basic sites. Under the condition of 140℃ and H_2 pressure of 4 MPa, the conversion of sterol and the yield of pentanediol reached 74.13% and 58.36%, respectively, after 8 h of reaction.
引文
[1] Iborra S, Huber G W, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9):4044-4089.
    [2] Velty A, Iborra S, Corma A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007, 107(6):2411-2502.
    [3] Tilman D, Socolow R, Foley J A, et al. Beneficial biofuels—the food, energy, and environment trilemma[J]. Science, 2009, 325(5938):270-271.
    [4] Zhou B W, Song J L, Zhang Z R, et al. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2[J]. Green Chemistry, 2017, 19:1075-1081.
    [5] Cui J, Tan J, Zhu Y, et al. Aqueous hydrogenation of levulinic acid to 1,4-pentanediol over Mo-modified Ru/activated carbon catalyst[J]. ChemSusChem, 2018, 11(8):1316-1320.
    [6] Adkins H, Connor R. The catalytic hydrogenation of organic compounds over copper chromite[J]. Journal of the American Chemical Society, 1931, 53(3):1091-1095.
    [7] Connor R, Adkins H. Hydrogenolysis of oxygenated organic compounds[J]. Journal of the American Chemical Society, 1932,54(12):4678-4690.
    [8] Connor R, Folkers K, Adldns H. The preparation of copperchromium oxide catalysts for hydrogenation[J]. Journal of the American Chemical Society, 1932, 54(3):1138-1145.
    [9] Li X, Jia P, Wang T. Furfural:a promising platform compound for sustainable production of C4and C5chemicals[J]. ACS Catalysis,2016, 6:7621-7640.
    [10] Sun D, Sato S, Ueda W, et al. Production of C4and C5alcohols from biomass-derived materials[J]. ChemInform, 2016, 47(26):2579-2597.
    [11] Mizugaki T, Yamakawa T, Nagatsu Y, et al. Direct transformation of furfural to 1, 2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst[J]. ACS Sustainable Chemistry&Engineering, 2014, 2(10):2243-2247.
    [12] Liu H, Huang Z, Kang H, et al. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1, 2-and 1, 5-pentanediol over highly dispersed Cu-Al2O3catalysts[J]. Chinese Journal of Catalysis, 2016, 37(5):700-710.
    [13] Schlaf M. Selective deoxygenation of sugar polyols toα,ω-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis[J].Dalton Transactions, 2006, 29(39):4645-4653.
    [14] Sato M, Otabe N, Tuji T, et al. Highly-selective and high-speed Claisen rearrangement induced with subcritical water microreaction in the absence of catalyst[J]. Green Chemistry,2009, 11(6):763-766.
    [15] Chatterjee M, Kawanami H, Ishizaka T, et al. An attempt to achieve the direct hydrogenolysis of tetrahydrofurfuryl alcohol in supercritical carbon dioxide[J]. Catalysis Science&Technology,2011, 1(8):1466-1471.
    [16] Xu W J, Wang H F, Wang Y P, et al. Direct catalytic conversion of furfural to 1, 5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4catalyst[J]. Chemical Communication, 2011, 47(3):3924-3926.
    [17] Zhang B, Zhu Y, Ding G, et al. Selective conversion of furfuryl alcohol to 1, 2-pentanediol over a Ru/MnOx catalyst in aqueous phase[J]. Green Chemistry, 2012, 14(12):3402-3409.
    [18] Cui J, Tan J, Cui X, et al. Conversion of xylose to furfuryl alcohol and 2-methylfuran in a continuous fixed-bed reactor[J].ChemSusChem, 2016, 9(11):1259-1262.
    [19] Xia S X, Nie R F, Lu X Y, et al. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgx Al2O8.6catalysts:the role of basicity and hydrogen spillover[J]. Journal of Catalysis, 2012, 296(7):1-11.
    [20] Pinnavaia T J. Intercalated clay catalysts[J]. Science, 1983, 220(4595):365-371.
    [21] W?grzyn A, Rafalska-?asocha A, Majda D, et al. The influence of mixed anionic composition of Mg-Al hydrotalcites on the thermal decomposition mechanism based on in situ study[J]. Journal of Thermal Analysis&Calorimetry, 2010, 99(2):443-457.
    [22] Forgionny A, Fierro G, Mondragon F, et al. Effect of Mg/Al ratio on catalytic behavior of Fischer-Tropsch cobalt-based catalysts obtained from hydrotalcites precursors[J]. Topic Catalysis, 2016,59(2/4):230-240.
    [23] Zhou M, Zeng Z, Zhu H, et al. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:model reaction for upgrading of bio-oil[J]. Journal of Energy Chemistry, 2014, 23(1):91-96.
    [24] Debecker D P, Gaigneaux E M, Bysca G. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis[J]. Chemistry, 2009, 15(16):3920-3935.
    [25] Jiang Z, Hao Z P, Yu J J, et al. Catalytic combustion of methane on novel catalysts derived from Cu-Mg/Al-hydrotalcites[J].Catalysis Letters, 2005, 9(3/4):157-163.
    [26] Zeng Y, Zhang T, Xu Y, et al. Cu/Mg/Al hydrotalcite-like hydroxide catalysts for o-phenylphenol synthesis[J]. Applied Clay Science, 2016, 126:207-214.
    [27] Parker L M, Milestone N B, Newman R H. The use of hydrotalcite as an anion absorbent[J]. Industrial&Engineering Chemistry Research, 1995, 34(4):1196-1202.
    [28] Melián-Cabrera I, López Granados M, Fierro J L G. Thermal decomposition of a hydrotalcite-containing Cu-Zn-Al precursor:thermal methods combined with an in situ DRIFT study[J].Physical Chemistry Chemical Physics, 2002, 4(13):3122-3127.
    [29] Kannan S, Rives V, Knozinger H. High-temperature transformations of Cu-rich hydrotalcites[J]. Journal of Solid State Chemistry, 2004, 177(1):319-331.
    [30] Bonura G, Cordaro M, Cannilla C, et al. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2hydrogenation reaction to methanol[J]. Applied Catalysis B:Environmental,2014, 152/153:152-161.
    [31] Pérez-Ram?R?ez J, Mul G, Moulijn J A. In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co-Al and Ni-Al hydrotalcites[J]. Vibrational Spectroscopy, 2001, 27(1):75-88.
    [32] Rousselot I, Tavioto-Gueh C, Besse J P, Synthesis and characterization of mixed Ga/Al-containing layered double hydroxides:study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate, and comparison to other LDHs[J]. International Journal of Inorganic Materials, 1999, 1:165-174.
    [33] Bas?G S, Piwowarska Z, Kowalczyk A, et al. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen—the influence of Mg/Al ratio and calcination temperature[J]. Applied Clay Science,2016, 129:122-130.
    [34] Corma A, Fornes V, Martin-Aranda R M, et al. ChemInform abstract:determination of base properties of hydrotalcites:condensation of benzaldehyde with ethyl acetoacetate[J]. Journal of Catalysis, 1992, 134(1):58-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700