40MW舰船用超临界CO_2布雷顿循环系统热力设计(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermodynamic Design of A Supercritical CO_2 Brayton Cycle for 40MW Shipboard Application
  • 作者:刘真 ; 琚亚平 ; 张楚华
  • 英文作者:Zhen Liu;Ya-ping Ju;Chu-hua Zhang;School of Energy and Power Engineering, Xi'an Jiaotong University;
  • 英文关键词:Supercritical Carbon Dioxide;;Recompression Brayton Cycle;;Shipboard Propulsion and Power;;Thermodynamic Design;;Cycle Efficiency
  • 中文刊名:FENG
  • 英文刊名:Chinese Journal of Turbomachinery
  • 机构:School of Energy and Power Engineering, Xi'an Jiaotong University;
  • 出版日期:2019-06-26
  • 出版单位:风机技术
  • 年:2019
  • 期:v.61;No.273
  • 基金:The National Key Research and Development Project of China under Grant No.2016YFB0200903;; National Natural Science Foundation of China under Grant No.51776154;; Shaanxi Key Research and Development Project under Grant No.S2018-YF-GHZD-0004
  • 语种:英文;
  • 页:FENG201903011
  • 页数:6
  • CN:03
  • ISSN:21-1167/TH
  • 分类号:5+72-76
摘要
超临界二氧化碳(S-CO_2)布雷顿循环受到了广泛的关注,但目前针对舰船推进和动力系统的专用S-CO_2循环分析和设计工作还很少。本文针对40MW舰船用S-CO_2布雷顿循环的热力设计问题,开展了循环形式和参数对热力学性能影响分析。结果表明,S-CO_2再压缩布雷顿循环系统热效率为45.06%,比简单回热循环效率高8.28%,回热器对系统热效率影响很大;压缩机入口压力对循环热效率的影响较大;分流系数在一定程度上可以反映循环热力性能。研究工作对舰船核动力推进和能量供应系统研发具有重要的参考价值。
        Although much attention has been paid to the supercritical CO_2(S-CO_2) Brayton cycle, there are still few works on the analysis and design of S-CO_2 cycle tailored to the needs of the shipboard propulsion and power system.The primary purpose of this study is to carry out the thermodynamic design of a S-CO_2 recompression Brayton cycle for shipboard application with 40 MW output power. Particular efforts are devoted to the analysis of the thermodynamic parameters of the cycle. The results show that the efficiency of the designed S-CO_2 Brayton cycle with a relatively complex recuperation cycle is 45.06 percent, 8.28 percent higher than that of a simple recuperation cycle. This indicates the great influence of the recuperation design on the efficiency of the Brayton cycle. Meanwhile, the compressor inlet pressure greatly affects the cycle efficiency, and the shunt flow percentage could partly reflect the cycle performance.This work is of important reference value for the development of future nuclear shipboard propulsion and power system.
引文
[1] Patel M R. Shipboard propulsion, power electronics, and ocean energy[M]. Boca Raton:CRC Press, 2012.
    [2] Dostal V, Hejzlar P, Driscoll M J. The supercritical carbon dioxide power cycle:comparison to other advanced power cycles[J]. Nuclear Technology, 2006, 154(3):283-301.
    [3] Hejzlar P, Dostal V, Driscoll M J, et al. Assessment of gas cooled fast reactor with indirect supercritical CO2 cycle[J]. Nuclear Engineering&Technology,2006,38(2):443-445.
    [4] Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2, power cycle technology and current status of research and development[J].Nuclear Engineering&Technology, 2015,47(6):647-661.
    [5] Feher E G. The supercritical thermodynamic power cycle[J].Energy Conversion, 1967,8(2):85-90.
    [6] Angelino G. Carbon dioxide condensation cycles for power production[J].Journal of Engineering for Gas Turbines&Power, 1968, 90(3):287.
    [7] Crespi F, Gavagnin G, Sánchez D, et al. Supercritical carbon dioxide cycles for power generation:A review[J].. Applied Energy, 2017, 195:152-183.
    [8] Dostal V, Driscoll M J, Hejzlar P. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004.
    [9] Sarkar J. Second law analysis of supercritical CO2, recompression Brayton cycle[J]. Energy, 2009,34(9):1172-1178.
    [10] Nagaiah N R, Mohagheghi M, Kapat J. Pareto-based multi-objectiveoptimization of recuperated S-CO2 Brayton cycles[C].ASME-GT2014-V03BT36A018, 2014.
    [11] Dyreby J J, Klein S A, Nellis G F, et al. Modeling off-design and part-load performance of supercritical carbon dioxide power cycles[C]. ASME-GT2013-V008T34A014,2013.
    [12] Bidkar R A, Mann A, Singh R, et al. Conceptual designs of 50 MWe and 450 MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 1:cycle and turbine[C].The 5th International Symposium-Supercritical CO2,2016.
    [13] Bidkar R A, Musgrove G, Day M, et al. Conceptual Designs of50MWe and 450MWe Supercritical CO2 Turbomachinery Trains for Power Generation from Coal. Part 2:Compressors[C].The 5th International Symposium-Supercritical CO2,2016.
    [14] Zhao H, Deng Q, Huang W, et al. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2Brayton cycles[J]. Journal of Engineering for Gas Turbines and Power, 2016,138(8):081602.
    [15] Deng Q H, Wang D, Zhao H, et al. Study on performances of supercritical CO2 recompression Brayton cycles with multi-objective optimization[J]. Applied Thermal Engineering, 2017,114:1335-1342.
    [16] Pasch J, Carlson M, Fleming D, et al.. Evaluation of recent data from the sandia national laboratories closed Brayton cycle testing[C]. ASME-GT2016-V009T36A015,2016.
    [17] Clementoni E M, Cox T L, King M A. Off-nominal component performance in a supercritical carbon dioxide Brayton cycle[J].Journal of Engineering for Gas Turbines and Power,2016, 138(1):011703.
    [18] Wang J, Huang Y, Zang J, et al. Recent research progress on supercritical carbon dioxide power cycle in China[C].ASME-GT2015-V009T36A016,2015.
    [19] Aritomi M, Ishizuka T, Muto Y, et al. Performance test results of the supercritical CO2compressor for a new gas turbine generating system[C]. International Conference on Nuclear Engineering. 2010:43-52,2010.
    [20] Cho J, Shin H, Ra H S, et al. Development of the supercritical carbon dioxide power cycle experimental loop in KIER[C].ASME-GT2016-V009T36A013,2016.
    [21] Vesely L, Dostal V, Hajek P. Design of experimental loop with supercritical carbon dioxide[C]. International Conference on Nuclear Engineering. 2014:V003T05A023,2014.
    [22] Twomey B, Nagy A, Russell H, et al. The university of queensland refrigerant and supercritical CO2test loop[C].ASME-GT2016-V003T25A013,2016.
    [23] Combs O V. An investigation of the supercritical CO2cycle(Feher cycle)for shipboard application[D]. Massachusetts Institute of Technology,1977.
    [24] Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800MPa[D]. Journal of Physical and Chemical Reference Data, 1996,25(6):1509-1596.
    [25] Zhao H, Peterson P F,(2008). Multiple reheat helium Brayton cycles for sodium cooled fast reactors[J]. Nuclear Engineering&Design,2008,238(7):1535-1546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700