高速再入发汗热防护效果计算与试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Computational and Experimental Study on Transpiration Heat-protection Effects in High Speed Reentry Vehicles
  • 作者:逯雪铃 ; 孟希慧 ; 任淑杰 ; 张庆兵 ; 张博 ; 姚军 ; 郭瑾 ; 黄海明 ; 彭锦龙 ; 周凯
  • 英文作者:LU Xueling;MENG Xihui;REN Shujie;ZHANG Qingbing;ZHANG Bo;YAO Jun;GUO Jin;HUANG Haiming;PENG Jinlong;ZHOU Kai;Beijing Institute of Electronic System Engineering;School of Civil Engineering and Architecture, Beijing Jiaotong University;China Academy of Aerospace Aerodynamics;
  • 关键词:高速再入 ; 主动热防护 ; 高温反应 ; 电弧风洞验证
  • 英文关键词:high speed reentry;;active heat-protection;;high temperature chemical reaction;;arc tunnel test
  • 中文刊名:ZRHT
  • 英文刊名:Manned Spaceflight
  • 机构:北京电子工程总体研究所;北京交通大学土木建筑工程学院;中国航天空气动力技术研究院;
  • 出版日期:2019-06-15
  • 出版单位:载人航天
  • 年:2019
  • 期:v.25;No.89
  • 基金:载人航天预先研究项目(040102)
  • 语种:中文;
  • 页:ZRHT201903007
  • 页数:8
  • CN:03
  • ISSN:11-5008/V
  • 分类号:52-59
摘要
针对强制发汗热防护用于高速再入飞行器抵抗气动加热引起的物面烧蚀的效果和可行性问题开展计算与试验研究。计算采用粘性高温多组分反应气体分析方法考虑来流空气与发汗介质的相互作用及组分反应。结果表明,在10 m/s发汗速率条件下,发汗物面热流密度已经降低了75%,在20 m/s发汗速率条件下则已经降低了99%。根据计算结果制备满足渗透率参数的发汗材料并完成发汗装置设计和防热效果电弧风洞试验验证。结果表明,发汗物面温升不足100 K。理论计算与地面试验验证表明,针对高速再入条件,发汗主动热防护可有效降低物面气动加热,可作为高速再入航天器防热备选方案。
        The cooling effect and feasibility of compelling transpiration system for the protection of the reentry vehicle against aeroheating ablation were studied computationally and experimentally. To analyze the heat protection efficiency and law with varying transpiration rates, a viscous high temperature multi-species reaction gas model was adopted in the calculation and the interaction between inflow air and coolant jet and the chemical reaction effect were considered. The results showed that the heating-rate was reduced by 75 % when the transpiration velocity was 10 m/s,and 99 % for 20 m/s. Based on the computational result, a transpiration device satisfying permeability was designed and its protection effect was verified experimentally in an arc tunnel. The results showed that the temperature at transpiration surface was below 100 K. The heat protection efficiency and feasibility in reentry flight condition were proved theoretically and experimentally, so the transpiration active heat-protection system may offer an alternative heat-protection scheme.
引文
[1] Ishihara T,Ogino Y,Sawada K,et al.Computation of surface heat transfer rate on Apollo CM test model in free-piston shock tunnel HIEST[R].AIAA 2012-0285,2012.
    [2] Glass D.Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and hot structures for hypersonic vehicles[R].AIAA-2008-2682,2008.
    [3] 丁亮.烧结多孔介质材料发汗冷却的研究[D].合肥:中国科学技术大学,2012.Ding L.Investigation on Transpiration Cooling within Sintered Porous Material[D].Hefei:University of Science and Technology of China,2012.(in Chinese)
    [4] Van F A,Sippel M,Gülhan A,et al.Transpiration cooling using liquid water[R].AIAA 2007-4034,2007.
    [5] Gnoffo P A,Gupta R N,Shinn J L.Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R].NASA-TP-2867,L-16477,NAS 1.60:2867,1989.
    [6] Gupta R N,Yos J M,Thompson R A,et al.A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculation to 30,000K[R].NASA-TM-101528,NAS 1.15:101528,1990.
    [7] Reimer T,Kuhn M,Gülhan A,et al.Transpiration cooling tests of porous CMC in hypersonic flow[R].AIAA 2011-2251,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700