生物质微波热解利用技术综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of microwave technology in biomass pyrolysis: a review
  • 作者:辛子扬 ; 葛立超 ; 冯红翠 ; 黄雪芬 ; 李蓝茜 ; 刘晓燕 ; 许昌
  • 英文作者:XIN Ziyang;GE Lichao;FENG Hongcui;HUANG Xuefen;LI Lanxi;LIU Xiaoyan;XU Chang;College of Energy and Electrical Engineering, Hohai University;Huatian Engineering & Technology Corporation,MCC;Dongfang Turbine Co., Ltd.;
  • 关键词:生物质 ; 微波辅助热解 ; 生物油 ; 可燃气 ; 高附加值碳材料
  • 英文关键词:biomass;;microwave-assisted pyrolysis;;bio-oil;;combustible gas;;high value-added carbon material
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:河海大学能源与电气学院;中冶华天工程技术有限公司;东方电气集团东方汽轮机有限公司;
  • 出版日期:2019-07-09 10:26
  • 出版单位:热力发电
  • 年:2019
  • 期:v.48;No.392
  • 基金:国家自然科学基金项目(51706059);; 中央高校基本科研业务费专项资金资助(2018B24914)~~
  • 语种:中文;
  • 页:RLFD201907003
  • 页数:13
  • CN:07
  • ISSN:61-1111/TM
  • 分类号:25-37
摘要
生物质是一种低成本、易得、环保、分布广泛和可再生的碳源,从生物质出发生产可再生能源可以有效缓解能源压力,减少环境污染。微波辅助热解技术具有选择性和体积加热特性,以及加热速度快、易于控制和节能等特点,可以实现生物质的高效转化,是目前公认的比传统生物质热解技术更有效更稳定的途径。本文重点关注近年来微波技术在生物质热解领域应用的研究进展,按其目的产物生物油、可燃气体和高附加值碳材料三方面进行阐述,对微波热解的机理进行了一定的探析,并总结和展望了微波技术在生物质热解领域应用中存在的问题、解决途径和发展前景。
        Biomass is a kind of low-cost, accessible, environmentally-friendly, widely distributed and renewable carbon source. The production of renewable energy from biomass can effectively alleviate energy pressure and reduce environmental pollution. Microwave-assisted pyrolysis technology has the characteristics of selective and volume heating, fast heating, easy control and energy saving. It can realize efficient conversion of biomass, which is currently recognized as a more effective and stable way than the conventional biomass pyrolysis technology. This paper focuses on the progress of microwave technology research in the field of biomass pyrolysis in recent years. It elaborates on its target products: bio-oil, syngas and high value-added carbon materials, and analyzes the mechanism of microwave pyrolysis. Finally, it summarizes the problems existing in application of the microwave technology in biomass pyrolysis, proposes the solutions and forecasts the development prospects.
引文
[1]李佩聪.生物质发电的未来展望[J].能源, 2018(增刊1):159-161.LI Peicong. Future prospects of biomass power generation[J]. Energy, 2018(Suppl.1):159-161.
    [2] SHARIFZADEH M, SADEQZADEH M, GUO M, et al.The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading:review of the state of art and future research directions[J]. Progress in Energy and Combustion Science, 2019, 71:1-80.
    [3] MENéNDEZ J, ARENILLAS A, FIDALGO B, et al.Microwave heating processes involving carbon materials[J]. Fuel Processing Technology, 2010, 91(1):1-8.
    [4]葛立超.我国典型低品质煤提质利用及分级分质多联产的基础研究[D].杭州:浙江大学, 2014:1-10.GE Lichao. Basic research on typical low-quality coal upgrading and poly-generation system based on the cascade utilization of coal[D]. Hangzhou:Zhejiang University, 2014:1-10.
    [5] HUANG Y, CHIUEH P, LO S. A review on microwave pyrolysis of lignocellulosic biomass[J]. Sustainable Environment Research, 2016, 26:103-109.
    [6] ZHOU R, LEI H, JULSON J. The effects of pyrolytic conditions on microwave pyrolysis of prairie cordgrass and kinetics[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101:172-176.
    [7] ZHANG S, DONG Q, ZHANG L, et al. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts[J]. Bioresource Technology, 2015, 191:17-23.
    [8] WANG X, CHEN H, LUO K, et al. The influence of microwave drying on biomass pyrolysis[J]. Energy&Fuels, 2008, 22(1):67-74.
    [9]胡国荣,张帅,王贤华,等.微波预处理对生物质干燥特性及理化性质的影响[J].太阳能学报, 2017, 38(10):2693-2697.HU Guorong, ZHANG Shuai, WANG Xianhua, et al.Influence of microwave pretreatment on drying characteristics and physicochemical pyrolysis of biomass[J]. Acta Energiae Solaris Sinica, 2017, 38(10):2693-2697.
    [10]王新运,秦国旭,陈明强,等.催化剂对棉秆微波裂解产物产率和裂解油组分的影响[J].过程工程学报,2016, 16(6):960-965.WANG Xinyun, QIN Guoxu, CHEN Mingqiang, et al.Effects of catalysts on the product yields and the bio-oil components from microwave pyrolysis of cotton stalk[J].The Chinese Journal of Process Engineering, 2016,16(6):960-965.
    [11]牛淼淼,杨佳耀,李尚,等.生物质热解制生物油及其提质研究现状[J].生物质化学工程, 2018, 52(5):55-61.NIU Miaomiao, YANG Jiayao, LI Shang, et al. Review on biomass pyrolysis for bio-oil and upgrading research[J].Biomass Chemical Engineering, 2018, 52(5):55-61.
    [12] MOSTAFAZADEH A K, SOLOMATNIKOVA O,DROGUI P, et al. A review of recent research and developments in fast pyrolysis and bio-oil upgrading[J].Biomass Conversion and Biorefinery, 2018, 8(3):739-773.
    [13]王贤华,陈汉平,张世红,等.生物质微波干燥及其对热解的影响[J].燃料化学学报, 2011, 39(1):14-20.WANG Xianhua, CHEN Hanping, ZHANG Shihong, et al. Microwave drying of biomass and its effect on pyrolysis characteristics[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1):14-20.
    [14] REN S, LEI H, WANG L, et al. The integrated process of microwave torrefaction and pyrolysis of corn stover for biofuel production[J]. Journal of Analytical and Applied Pyrolysis, 2014, 108:248-253.
    [15]张帅.生物质微波预处理的实验研究[D].武汉:华中科技大学, 2014:29-39.ZHANG Shuai. Experimental study on microwave pretreatment of biomass[D]. Wuhan:Huazhong University of Science&Technology, 2014:29-39.
    [16] HO S, ZHANG C, CHEN W, et al. Characterization of biomass waste torrefaction under conventional and microwave heating[J]. Bioresource Technology, 2018,264:7-16.
    [17] HUANG Y, CHEN W, CHIUEH P, et al. Microwave torrefaction of rice straw and pennisetum[J]. Bioresource Technology, 2012, 123:1-7.
    [18] REN S, LEI H, WANG L, et al. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating[J]. Bioresource Technology, 2013, 135:659-664.
    [19] REN S, LEI H, WANG L, et al. The integrated process of microwave torrefaction and pyrolysis of corn stover for biofuel production[J]. Journal of Analytical and Applied Pyrolysis, 2014, 108:248-253.
    [20]商辉,路冉冉,孙晓锋.微波热解生物质废弃物的研究[J].可再生能源, 2011, 29(3):25-29.SHANG Hui, LU Ranran, SUN Xiaofeng. Research on microwave pyrolysis of biomass waste[J]. Renewable Energy Resources, 2011, 29(3):25-29.
    [21] HUANG Y, CHIUEH P, KUAN K, et al. Microwave pyrolysis of lignocellulosic biomass:Heating performance and reaction kinetics[J]. Energy, 2016, 100:137-144.
    [22]赵延兵,王鑫,佟明友.生物质微波热解影响因素的研究[J].当代化工, 2013, 42(5):544-547.ZHAO Yanbing, WANG Xin, TONG Mingyou. Study on the factors influencing microwave pyrolysis of biomass[J].Contemporary Chemical Industry, 2013, 42(5):544-547.
    [23]李攀,王贤华,龚维婷,等.微波加热条件下棉杆热解的产物特性分析[J].农业工程学报, 2013, 29(15):200-206.LI Pan, WANG Xianhua, GONG Weiting, et al. Property analysis of pyrolysis product from cotton stalk heating by microwave[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15):200-206.
    [24]姚瑶,何艳峰,刘金淼,等.微波热解生物质的催化剂和吸收剂研究进展[J].现代化工, 2016, 36(2):12-16.YAO Yao, HE Yanfeng, LIU Jinmiao, et al. Progress of catalysts and absorbers for microwave assisted pyrolysis of biomass[J]. Modern Chemical Industry, 2016, 36(2):12-16.
    [25] BORGES F C, DU Z, XIE Q, et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent[J].Bioresource Technology, 2014, 156:267-274.
    [26]赵延兵,王鑫,佟明友.微波热解工艺参数影响气液产物组成的研究[J].可再生能源, 2013, 31(10):92-97. ZHAO Yanbing, WANG Xin, TONG Mingyou. The study on microwave pyrolysis parameters influence of liquid and gas product composition[J]. Renewable Energy Resources, 2013, 31(10):92-97.
    [27] MACQUARRIE D J, CLARK J H, FITZPATRICK E.The microwave pyrolysis of biomass[J]. Biofuels,Bioproducts&Biorefining, 2012, 6(5):549-560.
    [28] LI L, MA X, XU Q, et al. Influence of microwave power,metal oxides and metal salts on the pyrolysis of algae[J].Bioresource Technology, 2013, 142:469-474.
    [29] SHANG H, LU R, SHANG L, et al. Effect of additives on the microwave-assisted pyrolysis of sawdust[J]. Fuel Processing Technology, 2015, 131:167-174.
    [30]张新伟,王鑫,陈平,等.复合微波吸收剂辅助生物质裂解制CXX究[J].当代化工, 2014, 43(8):1407-1410.ZHANG Xinwei, WANG Xin, CHEN Ping, et al. Study on preparation of bio-oils by complex microwave absorbent-assisted pyrolysis of biomass[J]. Contemporary Chemical Industry, 2014, 43(8):1407-1410.
    [31] ZHANG X, RAJAGOPALAN, LEI H, et al. An overview of a novel concept in biomass pyrolysis:microwave irradiation[J]. Sustainable Energy&Fuels 2017, 1(8):1664-1669.
    [32] WAN Y, CHEN P, ZHANG B, et al. Microwave-assisted pyrolysis of biomass:Catalysts to improve product selectivity[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86:161-167.
    [33]赖志彬.无患子微波裂解及其产物研究[D].福州:福州大学, 2014:13-17.LAI Zhibin. Study on microwave pyrolysis of sapindus and its products[D]. Fuzhou:Fuzhou University, 2014:13-17.
    [34] FAN L, CHEN P, ZHANG Y, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and Mg O for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225:199-255.
    [35] LIU S, XIE D, ZHANG B, et al. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with Ca O and HZSM-5 as the catalyst[J].Bioresource Technology, 2016, 204:164-170.
    [36] BU Q, LEI H, WANG L, et al. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons[J]. Bioresource Technology,2014, 162:142-147.
    [37] BU Q, LEI H, WANG L, et al. Biofuel production from catalytic microwave pyrolysis of Douglas fir pellets over ferrum-modified activated carbon catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112:74-79.
    [38] FANCHIANG W, LIN Y. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts[J].Applied Catalysis A-General, 2012, 419:102-110.
    [39] WANG L, LEI H, BU Q, et al. Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor[J]. Fuel, 2014, 129:78-85.
    [40]李攀,王贤华,龚维婷,等.金属盐添加剂对生物质微波热解特性的影响[J].农业机械学报, 2013, 44(6):162-167.LI Pan, WANG Xianhua, GONG Weiting, et al. Effects of metal salt additives on biomass microwave pyrolysis characteristic[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6):162-167.
    [41]郭良.生物质微波裂解实验研究[D].上海:华东理工大学, 2018:25-26.GUO Liang. Experimental study on biomass microwave cracking[D]. Shanghai:East China University of Science and Technology, 2018:25-26.
    [42] CHEN M, WANG J, ZHANG M, et al. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82:145-150.
    [43] HUANG Y, KUAN W, CHANG C, et al. Catalytic and atmospheric effects on microwave pyrolysis of corn stover[J]. Bioresource Technology, 2013, 131:274-280.
    [44]曹巍巍,杨忠连,陈明强,等. 3种过渡金属氧化物对生物质微波快速催化热解产物的影响[J].可再生能源,2014, 32(5):703-708.CAO Weiwei, YANG Zhonglian, CHEN Mingqiang, et al. Influence of three transition metal oxides on products of biomass by microwave assisted fast catalytic pyrolysis[J]. Renewable Energy Resources, 2014, 32(5):703-708.
    [45] OMORIYEKOMWAN J E, TAHMASEBI A, YU J.Production of phenol-rich bio-ol during catalytic fixed-bed and microwave pyrolysis of palm kernel shell[J]. Bioresource Technology, 2016, 207:188-196.
    [46] REN S, LEI H, WANG L, et al. Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts[J].Royal Society of Chemistry, 2014, 4(21):10731-10737.
    [47] LIU S, ZHANG Y, FAN L, et al. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017, 196:261-268.
    [48] WANG L, LEI H, REN S, et al. Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98:194-200.
    [49]彭锦星,刘新媛,鲍振博.生物质的微波热解技术研究进展[J].应用化工, 2018, 47(7):1499-1503.PENG Jinxing, LIU Xinyuan, BAO Zhenbo. Research progress of microwave pyrolysis technology for biomass[J].Applied Chemical Industry, 2018, 47(7):1499-1503.
    [50] SURIAPPARAO D, BORUAH B, RAJA D, et al.Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production[J]. Fuel Processing Technology, 2018, 175:64-75.
    [51] DUAN D, WANG Y, DAI L, et al. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating[J]. Bioresource Technology, 2017, 241:207-213.
    [52] ZHOU Y, WANG Y, FAN L, et al. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:35-41.
    [53] XIE Q, ADDY M, LIU S, et al. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production[J]. Fuel, 2015, 160:577-582.
    [54] DAI L, FAN L, DUAN D, et al. Microwave-assisted catalytic fast co-pyrolysis of soapstock and waste tire for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125:304-309.
    [55] HONG Y, CHEN W, LUO X, et al. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production[J]. Bioresource Technology, 2017, 237:47-56.
    [56]董庆.基于微波加热的竹材生物质热解机理及特性研究[D].南京:东南大学, 2015:47-48.DONG Qing. Experimental and characteristics study on pyrolysis of bamboo-based biomass assisted by microwave heating[D]. Nanjing:Southeast University, 2015:47-48.
    [57] DOMíNGUEZ A, MENéNDEZ J, FERNáNDEZ Y, et al. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas[J]. Journal of Analytical and Applied Pyrolysis,2007, 79:128-135.
    [58] FERNáNDEZ Y, MENéNDEZ J. Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91:316-322.
    [59]王晓磊,邓文义,于伟超,等.污泥微波高温热解条件下富氢气体生成特性研究[J].燃料化学学报, 2013,41(2):243-251.WANG Xiaolei, DENG Wenyi, YU Weichao, et al.Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2):243-251.
    [60] ZHAO X, WANG M, LIU H, et al. Effect of temperature and additives on the yields of products and microwave pyrolysis behaviors of wheat straw[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100:49-55.
    [61]于颖,于俊清,严志宇.污水污泥微波辅助快速热裂解制生物油和合成气[J].环境化学, 2013, 32(3):486-491.YU Ying, YU Junqing, YAN Zhiyu. Rapid pyrolysis of sewage sludge for the production of bio-oil and syngas under microwave radiation[J]. Environmental Chemical,2013, 32(3):486-491.
    [62]刘洪贞.小麦秸秆微波热解产物特性研究[D].济南:山东大学, 2010:33-39.LIU Hongzhen. Study on products characteristics of wheat straw by microwave pyrolysis[D]. Jinan:Shandong University, 2010:33-39.
    [63] YU Y, YU J, SUN B, et al. Influence of catalyst types on the microwave-induced pyrolysis of sewage sludge[J].Journal of Analytical and Applied Pyrolysis, 2014, 106:86-91.
    [64] REN S, LEI H, WANG L, et al. Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts[J].Royal Society of Chemistry, 2014(4):10731-10737.
    [65] DONG Q, NIU M, BI D, et al. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production[J]. Bioresource Technology, 2018, 256:145-151.
    [66]徐艳,史高琦,王曙光.生物炭在土壤污染修复中的应用[J].安徽农业科学, 2018, 46(26):120-122.XU Yan, SHI Gaoqi, WANG Shuguang. Application of biochar in soil pollution remediation[J]. Journal of Anhui Agricultural Sciences, 2018, 46(26):120-122.
    [67]阮榕生,程方园,王允圃,等.生物质高效炼制绿色化学品的最新研究进展[J].现代化工, 2013, 33(9):27-31.RUAN Rongsheng, CHENG Fangyuan, WANG Yunpu, et al. Advance in biorefinery technology for green chemicals[J]. Modern Chemical Industry, 2013, 33(9):27-31.
    [68]曾稳稳.甘蔗渣微波裂解制备糠醛及土壤改良剂的研究[D].南昌:南昌大学, 2011:28-29.ZENG Wenwen. Prepare furfural and soil conditioner from bagasse by means of microwave pyrolysis[D].Nanchang:Nanchang University, 2011:28-29.
    [69] WANG Y, WU Q, DUAN D, et al. Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock[J]. Bioresource Technology, 2018, 261:306-312.
    [70] YUEN F K, HAMEED B. Recent developments in the preparation and regeneration of activated carbons by microwaves[J]. Advances in Colloid and Interface Science, 2009, 149:19-27.
    [71]励建荣,王立娜,金毅,等.国内外空气净化消毒技术的研究进展[J].环境科学与技术, 2014, 37(增刊1):204-209.LI Jianrong, WANG Lina, JIN Yi, et al. Research progress on air purification and disinfection technology at home and abroad[J]. Environmental Science&Technology, 2014, 37(Suppl.1):204-209.
    [72] PINTAR A. Catalytic processes for the purification of drinking water and industrial effluents[J]. Catalysis Today, 2003, 77:451-465.
    [73]储雪松,陈孟林,宿程远,等.生物活性炭技术在水处理中的研究与应用进展[J].水处理技术, 2018, 44(11):5-10.CHU Xuesong, CHEN Menglin, SU Chengyuan, et al.Progress in research and application of biological activated carbon technology in water treatment[J].Technology of Water Treatment, 2018, 44(11):5-10.
    [74]李娟,马珠凤,李元瑞.活性炭的性能及在制药生产中的应用[J].中国现代应用药学, 2009, 26(增刊1):1121-1124.LI Juan, MA Zhufeng, LI Yuanrui. Performance of activated carbon and its application in pharmaceutical production[J]. Chinese Journal of Modern Applied Pharmacy, 2009, 26(Suppl.1):1121-1124.
    [75]王勋,曾丹林,陈诗渊,等.生物质活性炭的研究进展[J].化工新型材料, 2018, 46(6):27-30.WANG Xun, ZENG Danlin, CHEN Shiyuan, et al.Research progress of activated carbon from biomass[J].New Chemical Materials, 2018, 46(6):27-30.
    [76] HESAS R H, DAUDA W M A E, SAHU J, et al. The effects of a microwave heating method on the production of activated carbon from agricultural waste:a review[J].Journal of Analytical and Applied Pyrolysis, 2013, 100:1-11.
    [77]贾佳祺,李坤权,张雨轩,等.磷酸微波活化多孔生物质炭对亚甲基蓝的吸附特性[J].环境工程学报, 2014,8(1):92-97.JIA Jiaqi, LI Kunquan, ZHANG Yuxuan, et al.Adsorption characteristics of methylene blue onto biomass-based porous activated carbons by microwave assisted H3PO4 activation[J]. Chinese Journal of Environmental Engineering, 2014, 8(1):92-97.
    [78] DUAN X, SRINIVASAKANNAN C, WANG X, et al.Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70:374-381.
    [79]杨仲禹,韩继铖,李解,等.微波辅助碳酸钾活化制备玉米秆基活性生物炭[J].材料科学与工程学报, 2015,33(6):903-907.YANG Zhongyu, HAN Jicheng, LI Jie, et al. Microwave assisted potassium carbonate activation from cornstalk[J]. Journal of Materials Science&Engineering,2015, 33(6):903-907.
    [80] ABBAS A F, AHMED M J. Mesoporous activated carbon from date stones(Phoenix dactylifera L.)by one-step microwave assisted K2CO3 pyrolysis[J]. Journal of Water Process Engineering, 2016, 9:201-207.
    [81]王宇迪,王质斌,赖志彬,等.微波裂解稻壳制备活化炭的工艺研究[J].中国农学通报, 2013, 29(26):78-87.WANG Yudi, WANG Zhibin, LAI Zhibin, et al. Research on technology of activated carbon preparation by microwave pyrolysis of rice hull[J]. Chinese Agricultural Science Bulletin, 2013, 29(26):78-87.
    [82] MAO H, ZHOU D, ZAHER H, et al. Preparation of pinewood-and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions[J]. Bioresources, 2015, 10:809-821.
    [83] DENG H, YANG Y, TAO G, et al. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation:application in methylene blue adsorption from aqueous solution[J].Journal of Hazardous Materials, 2009, 166:1514-1521.
    [84] PEZOTI J O, CAZETTA A L, GOMES R C, et al.Synthesis of ZnCl2-activated carbon from macadamia nut endocarp(macadamia integrifolia)by microwave-assisted pyrolysis:optimization using RSM and methylene blue adsorption[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105:166-176.
    [85] LEE C J, LEE T J, PARK J. Carbon nanofibers grown on sodalime glass at 500℃using thermal chemical vapor deposition[J]. Chemical Physics Letters, 2001, 340:413-418.
    [86] MUBARAK N M, ABDULLAH E C, JAYAKUMAR N S, et al. An overview on methods for the production of carbon nanotubes[J]. Journal of Industrial Engineering Chemistry, 2014, 20:1186-1197.
    [87] SHILP A, DAS S K, AFZAL M A F, et al. Enhanced electrical conductivity of suspended carbon nanofibers:effect of hollow structure and improved graphitization[J].Carbon, 2016, 108:135-145.
    [88] OMORIYEKOMWAN J E, TAHMASEBI A, ZHANG J,et al. Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell[J].Energy Conversion and Management, 2017, 148:583-592.
    [89] HE H, PHAM-HUY L A, DRAMOU P, et al. Carbon nanotubes:applications in pharmacy and medicine[J].Biomed Research International, 2013:578290.
    [90] LEE H M, KWAC L K, AN K H, et al. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors[J]. Energy Conversion and Management, 2016, 125:347-352.
    [91] VáZQUEZ E, PRATO M. Carbon nanotubes and microwaves:interactions, responses, and applications[J].ACS Nano, 2009, 3:3819-3824.
    [92] SHI K, YAN J, LESTER E, et al. Catalyst-free synthesis of multiwalled carbon nanotubes via microwave-induced processing of biomass[J]. Industrial&Engineering Chemistry Research, 2014, 53:15012-15019.
    [93] DEBALINA B, REDDY R B, VINU R. Production of carbon nanostructures in biochar, bio-oil and gases from bagasse via microwave assisted pyrolysis using Fe and Co as susceptors[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:310-318.
    [94] WANG Z, SHEN D, WU C, et al. State-of-the-art on the production and application of carbon nanomaterials from biomass[J]. Green Chemistry, 2018, 20:5031.
    [95] ZHANG J, TAHMASEBI A, OMORIYEKOMWAN J E,et al. Direct synthesis of hollow carbon nanofibers on bio-char during microwave pyrolysis of pine nut shell[J].Journal of Analytical and Applied Pyrolysis, 2018, 130:142-148.
    [96] WANG C, MA D, BAO X. Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation[J]. The Journal of Physical Chemistry C, 2008, 112:17596-17602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700