修正贝塞尔高斯谢尔光束在湍流中的演变特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution properties of modified Bessel-GaussianSchell-model beams in turbulent
  • 作者:王瑾 ; 曾福江 ; 李杏梅 ; 梁晴晴
  • 英文作者:WANG Jin;ZENG Fujiang;LI Xingmei;LIANG Qingqing;School of Mechanical Engineering and Electronic Information,China University of Geoscience,Wuhan;
  • 关键词:激光通信 ; 湍流 ; 部分相干 ; 相关宽度 ; 修正贝塞尔高斯谢尔光束 ; 广义惠更斯-菲涅尔原理
  • 英文关键词:laser communication;;turbulence;;partially coherent;;correlation width;;MBGS beams;;extended Huygens-Fresnel principle
  • 中文刊名:HZLG
  • 英文刊名:Journal of Huazhong University of Science and Technology(Natural Science Edition)
  • 机构:中国地质大学(武汉)机械与电子信息学院;
  • 出版日期:2019-03-13 16:21
  • 出版单位:华中科技大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.435
  • 基金:高等学校博士学科点专项科研基金资助项目(20120145120011)
  • 语种:中文;
  • 页:HZLG201903019
  • 页数:6
  • CN:03
  • ISSN:42-1658/N
  • 分类号:114-119
摘要
研究了修正贝塞尔高斯谢尔(MBGS)光束在柯尔莫哥诺夫湍流模型下的演变特性,推导了MBGS光束在源平面场的表达式,在此基础上利用广义惠更斯-菲涅尔积分原理获得任意阶修正贝塞尔高斯谢尔光束在经过湍流大气后的平均光强解析表达式.数值计算和分析表明:相关宽度对MBGS光束在湍流大气中的演变特性具有重要影响,增大相关宽度减缓了修正贝塞尔高斯谢尔光束演变为高斯光束的进程,增大了光束经过湍流大气后接收平面的光强.相比于高阶MBGS光束,低阶MBGS光束在湍流大气中传播后能够获得更大的归一化平均光强,但在传播过程中比高阶MBGS光束更早演变为高斯光束.MBGS光束在湍流大气中传播时,相关宽度优化选取后的低阶、短波长MBGS光束具备更强的抗干扰性.
        The propagation characteristics of modified Bessel-Gaussian Schell-model(MBGS) beams traveling in the Kolmogorov turbulent atmosphere were investigated in this paper.The MBGS beams at the source plane were formulated.Based on this formulation and the extended Huygens-Fresnel principle,the receiver plane intensity of an arbitrary-order MBGS beam through turbulent atmosphere was obtained.Numerical results reveal that the correlation width has an important influence on the evolution properties of MBGS beams propagating in the atmosphere.The MBGS beams with the large correlation width have a slow evolving process into Gaussian beams and large intensity.Furthermore,the low-order MBGS beams have a large intensity at the receiving plane after propagating in the turbulent atmosphere,but they evolve into Gaussian beams earlier than the higher-order MBGS beams.We find that MBGS beams with short wavelength,low-order,by appropriately selecting the correlation width,are more robust.While propagating in the turbulent atmosphere,they have a large intensity at the receiving plane.
引文
[1]WANG B.Study on the turbulence mitigation scheme in free-space optical communications using orbital angular momentum multiplexing[D].Nanjing:Nanjing University of Posts and Telecommunications,2014.
    [2]王瑾,黄德修,元秀华.基于最小均方自适应滤波器的无线光通信接收性能分析[J].中国激光,2006(10):1379-1383.
    [3]狄颢萍,张淇博,周木春,等.圆艾里高斯涡旋光在各向异性非Kolmogorov湍流大气中的传输[J].中国激光,2018,45(3):245-254.
    [4]ZHU K,ZHOU G,LI X,et al.Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere[J].Opt Express,2008,16(26):21315-21320.
    [5]OU J,JIANG Y S,ZHANG J H,et al.Spreading of spiral spectrum of Bessel-Gaussian beam in non-Kolmogorov turbulence[J].Opt Commun,2014,318:95-99.
    [6]牛化恒,韩一平.大气湍流中贝塞尔-高斯涡旋光束传播性能分析[J].激光技术,2017,41(3):451-455.
    [7]GBUR G,WOLF E.Spreading of partially coherent beams in random media[J].J Opt Soc Am A Opt Image Sci Vis,2002,19(8):1592-1598.
    [8]ARISTIDE D,STEFAN A.Propagation of partially coherent beams:turbulence-induced degradation[J].Opt Lett,2003,28(1):10.
    [9]CHENG M,GUO L,LI J,et al.Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean[J].Applied Optics,2016,55(17):4642.
    [10]高铎瑞,付强,赵昭,等.湍流大气中部分相干光束扩展对接收光功率的影响[J].中国激光,2013,40(12):224-228.
    [11]江月松,张新岗,王帅会,等.部分相干贝塞尔高斯光束在非柯尔莫哥诺夫湍流中的传输特性[J].光子学报,2014,43(1):7-11.
    [12]CHEN B S,CHEN Z Y,PU J X.Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere[J].Optics&Laser Technology.2008,40(6):820-827.
    [13]QIN Z Y,TAO R M,ZHOU P,et al.Propagation of partially coherent Bessel-Gaussian beams carrying optical vortices in non-Kolmogorov turbulence[J].Optics&Laser Technology,2014,56:182-188.
    [14]ANDREWS L C,PHILLIPS R L.Laser beam propagation through random media[M].2nd Edition.Bellingham:SPIE Press,1998,668-673.
    [15]WANG X Y,YAO M W,QIU Z L,et al.Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence[J].Opt Express,2015,23(10):12508.
    [16]AVRAMOV-ZAMUROVIC S,NELSON C,GUTH S,et al.Experimental study of electromagnetic BesselGaussian Schell model beams propagating in a turbulent channel[J].Opt Commun,2016,359:207-215.
    [17]LI Y,ZHANG Y X,WANG D L,et al.Statistical distribution of the OAM states of Bessel-Gaussian-Schell infrared beams in strong turbulent atmosphere[J].Infrared Phys Techn,2016,76:569-573.
    [18]CANG J,XIU P,LIU X.Propagation of LaguerreGaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere[J].Optics&Laser Technology,2013,54:35-41.
    [19]RUSCHIN S.Modified Bessel nondiffracting beams[J].Journal of the Optical Society of America A,1994,11(12):3224-3228.
    [20]EYYUBOGLU H T,HARDALAC F.Propagation of modified Bessel-Gaussian beams in turbulence[J].Optics&Laser Technology,2008,40(2):343-351.
    [21]EYYUBOGLU H T.Propagation of higher order Bessel-Gaussian beams in turbulence[J].Applied Physics B,2007,88(2):259-265.
    [22]CHENG M,GUO L,LI J,et al.Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J].J Opt Soc Am A Opt Image Sci Vis,2016,33(8):1442-1450.
    [23]WU Y,ZHANG Y,ZHU Y.Average intensity and directionality of partially coherent model beams propagating in turbulent ocean[J].J Opt Soc Am A Opt Image Sci Vis,2016,33(8):1451-1458.
    [24]LI Y,ZHANG Y,WANG D,et al.Statistical distribution of the OAM states of Bessel-Gaussian-Schell infrared beams in strong turbulent atmosphere[J].Infrared Physics&Technology,2016,76:569-573.
    [25]CHEN C,YANG H,KAVEHRAD M,et al.Validity of quadratic two-source spherical wave structure functions in analysis of beam propagation through generalized atmospheric turbulence[J].Optics Communications,2014,332(4):343-349.
    [26]GRADSHTEYN I S,RYZHIK I M.Table of Integrals,Series,and Products[M].7nd Edition.New York:Academic Press,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700