微秒脉冲电场下Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3陶瓷击穿过程电阻变化规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Resistance of Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3 under high voltage microsecond pulse induced breakdown
  • 作者:刘艺 ; 杨佳 ; 李兴 ; 谷伟 ; 高志鹏
  • 英文作者:Liu Yi;Yang Jia;Li Xing;Gu Wei;Gao Zhi-Peng;National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics;
  • 关键词:Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3 ; 脉冲高压 ; 击穿 ; 等效电阻
  • 英文关键词:Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3;;high voltage pulse;;breakdown;;equivalent resistance
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室;
  • 出版日期:2017-06-08
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:冲击波物理与爆轰物理国防科技重点实验室基金(批准号:2016Z-04)资助的课题~~
  • 语种:中文;
  • 页:WLXB201711033
  • 页数:6
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:343-348
摘要
陶瓷作为应用非常广泛的一种材料,其电击穿问题一直是研究的重点和热点.由于击穿过程涉及热、光、电多场耦合效应,目前还没有一个普适的模型能够解释陶瓷击穿问题.针对此问题进行分析,实验中采用脉冲高压发生装置击穿陶瓷,通过对陶瓷击穿过程中等效电阻的研究,揭示了PZT95/5陶瓷样品体击穿和沿面闪络形成过程的异同.结果显示,在两种击穿模式下,陶瓷样品内部均会在40 ns左右形成导电通道,陶瓷等效电阻急剧下降至10~5?量级;然后体击穿与沿面闪络的导电通道以不同的速率继续扩展;电阻减小速率与导电通道上载流子的浓度有关,二者的等效电阻以不同速率减小,直至导电通道达到稳定.
        Ferroelectric ceramics have been widely used in lots of fields, such as mechanical-electric transducer, ferroelectric memory, and energy storage devices. The dielectric breakdown process of ferroelectric ceramic has received much attention for years, due to the fact that this issue is critical in many electrical applications. Though great efforts have been made, the mechanism of dielectric breakdown is still under debate. The reason is that the electrical breakdown is a complex process related to electrical, thermal, and light effects. In the present work, we investigate the breakdown process of Pb_(0.99)(Zr_(0.95)Ti_(0.05))_(0.98)Nb_(0.02)O_3(PZT95/5) ceramic, which is a kind of typical ferroelectric ceramic working in the high voltage environments. The high voltage pulse generator is used in the breakdown experiments to apply a square pulsed voltage with an amplitude of 10 kV and a width of 7 μs. The resistivity change in the breakdown process is recorded by the high-frequency oscillograph in nano-second. The results show that there are two different breakdown types for our sample, i.e. body-breakdown and flashover. To better understand the breakdown mechanism of the PZT95/5 ceramic, the formation of the conductive channel in ceramic in the process is investigated by comparing the resistivity development in body-breakdown and flashover processes. The development of the conductive channel formation can be divided into three steps in body-breakdown. In the first step that lasts for the first 40 ns of breakdown,the conductive channel starts forming, with the equivalent resistance sharply decreasing to about 105? in the mean time. Then, i.e. in the second step, conductive path grows into a stable one with the equivalent resistance decreasing to the magnitude of about 102?. The resistance decreases slowly to about 130 ? in the third step, which means that the conductive channel is completely formed. The channel formation of flashover can also be divided into three steps. The first step is similar to that of body-breakdown, with the equivalent resistance decreasing to about 105? in about 40 ns. In the second step of flashover, the conductive path keeps growing into a stable one with the equivalent resistance decreasing to 102?, but with a different resistance changing rate from that in body-breakdown, and the resistance decreases slowly to about 20 ? in the end. Different behavior between the body-breakdown and the surface flashover can be explained by different carrier densities on the conductive paths in the two breakdown processes. In the body-breakdown, the carrier density in the conductive channel is higher than that in the surface flashover, which improves the electron transfer and reduces the resistance. This may explain the reason why the channel formation in body-breakdown is faster than in flashover. This study is helpful for further materials design and applications.
引文
[1]Farouk A M 2014 High Voltage Engineering(Boca Raton:CRC press)pp299–349
    [2]Hemmert D,Holt S,Krile J 2007 Proceedings of 10th Annual Directed Energy Symposium Huntsville,USA,November 5–8,2007 p5
    [3]Matsushima H,Okino H,Mochizuki K,Yamada R 2016J.Appl.Phys.119 154506
    [4]Kim S C,Heo H,Moon C,Nam S H 2016 IEEE Trans.Plasma Sci.44 687
    [5]Du J F,Liu D,Bai Z,Yu Q 2016 Jpn.J.Appl.Phys.55 054301
    [6]Shkuratov S I,Talantsev E F,Menon L,Temkin H,Baird J 2004 Rev.Sci.Instrum.75 2766
    [7]Forster E O 1990 J.Phys.D Appl.Phys.23 1507
    [8]Whitehead S 1953 Dielectric Breakdown of Solids(Oxford:Clarendon Press)pp37–54
    [9]Tu D M,Wang X S 1993 Acad.J.Xi’an Jiaotong Univ.27 33(in Chinese)[屠德民,王新生1993西安交通大学学报27 33]
    [10]Qu Y F 2007 Physical Behavior of Functional Ceramics(Beijing:Chemical Industry Press)pp107–118(in Chinese)[曲远方2007功能陶瓷的物理性能(北京:化学工业出版社)第107—118页]
    [11]Wang Y L 2003 Properties and Applications of Functional Ceramics(Beijing:Science Press)pp146–154(in Chinese)[王永龄2003功能陶瓷性能与应用(北京:科学出版社)第146—154页]
    [12]Han S M,Huh C S 2016 IEEE Trans.Plasma Sci.441429
    [13]Hu Y H,Yao H Y,Yu Z J,Wang Y Z 2016 Rare Metal Mat.Eng.45 571
    [14]Du J M,Zhang Y,Zhang F P,He H L,Wang H Y 2006Acta Phys.Sin.55 2584(in Chinese)[杜金梅,张毅,张福平,贺红亮,王海晏2006物理学报55 2584]
    [15]Lan C F,Nie H C,Chen X F,Wang J X,Wang G S,Dong X L,Liu Y S,He H L 2013 J.Inorg.Mater.28503(in Chinese)[兰春锋,聂恒昌,陈学锋,王军霞,王根水,董显林,刘雨生,贺红亮2013无机材料学报28 503]
    [16]Hall D A,Evans J D S,Covey-Crump S J,Holloway R F,Oliver E C,Moria T,Withers P J 2010 Acta Mater.58 6584
    [17]Wang J X,Wang J,Yang S Y,Bian L 2009 J.Lanzhou Univ.Technol.35 22(in Chinese)[王军霞,王进,杨世源,边亮2009兰州理工大学学报35 22]
    [18]Lysne P C 1977 J.Appl.Phys.48 4565
    [19]Wen D Y,Lin Q W 1997 Detonation and Shock Waves3 27(in Chinese)[温殿英,林其文1997爆轰波与冲击波3 27]
    [20]Jiang Y X,Wang S Z,He H L 2014 Chin.J.High Pressure Phys.28 680(in Chinese)[蒋一萱,王省哲,贺红亮2014高压物理学报28 680]
    [21]Zhang F P,Du J M,Liu Y S,Liu Y,Liu G M,He H L 2011 Acta Phys.Sin.60 057701(in Chinese)[张福平,杜金梅,刘雨生,刘艺,刘高旻,贺红亮2011物理学报60057701]
    [22]Pakhotin V A,Zakrevskii V A,Sudar N T 2015 Tech.Phys.60 1149
    [23]He L,Ji Y Z,Liu G C 2007 J.Changchun Univ.28 165(in Chinese)[贺莉,纪跃芝,刘国彩2007长春工业大学学报28 165]
    [24]Zhang F H 2008 Ph.D.Dissertation(Xi’an:Shaanxi University of Science&Technology)(in Chinese)[张方晖2008博士学位论文(西安:陕西科技大学)]
    [25]Lu Q M,Yang W H,Liu W D 2004 Nucl.Fusion Plasma Phys.24 33
    [26]Slutsker A I,Hilyarov V L 2011 Phys.Solid State 531325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700