金属离子掺杂全无机铅卤钙钛矿CsPbX_3纳米晶
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Doping of metal ions in CsPbX_3 all inorganic lead trihalide perovskite nanocrystals
  • 作者:贺香红 ; 傅瑜 ; 李中春 ; 张雅珩 ; 连宁 ; 夏志国
  • 英文作者:Xianghong He;Yu Fu;Zhongchun Li;Yaheng Zhang;Ning Lian;Zhiguo Xia;School of Chemistry and Environmental Engineering, Jiangsu University of Technology;School of Materials Science and Engineering, University of Science and Technology Beijing;
  • 关键词:金属离子掺杂 ; CsPbX3纳米晶 ; 离子交换 ; 掺杂驱动力 ; 光电性能
  • 英文关键词:metal ions doping;;CsPbX3 nanocrystals;;ion exchange;;doping driving force;;optoelectronic properties
  • 中文刊名:JBXK
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:江苏理工学院化学与环境工程学院;北京科技大学材料科学与工程学院;
  • 出版日期:2018-12-27 09:15
  • 出版单位:中国科学:化学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(编号:51872129,51722202)资助项目
  • 语种:中文;
  • 页:JBXK201906001
  • 页数:11
  • CN:06
  • ISSN:11-5838/O6
  • 分类号:5-15
摘要
无机铅卤钙钛矿CsPbX_3(X=Cl、Br、I或混合卤素)半导体纳米晶具有优异的光学和光电特性,是构筑照明、显示、光探测和光伏等多种光电器件颇有潜力的核心材料.这类材料在应用中存在的主要问题是如何协同调控或改善性能、提升稳定性并降低有毒铅的量. Pb~(2+)所在格位在决定其电子结构乃至光学和光电性能方面起着重要的作用.因此,最理想的方法是在Pb~(2+)的格位上有效且可控掺杂合适的金属离子.近年来,许多工作报道了CsPbX_3纳米晶的金属离子掺杂特性研究.为了更好地了解掺杂机制,未来开发出性能更优异的掺杂型钙钛矿材料,本文从掺杂离子、驱动力、掺杂策略及掺杂机理4个方面,分别总结了掺杂金属离子的种类及对光学和光电性能的影响,分析了掺杂剂中的阴离子和驱动力的作用,概述了主要的掺杂策略,系统阐述了后合成掺杂机理的核心思想,并指出了它们的不足之处,最后展望了今后在有效可控掺杂研究方面的一些挑战.
        Fully inorganic lead trihalide perovskite CsPbX_3 nanocrystals(NCs) have attracted significant attention over the past three years owing to excellent optical and optoelectronic properties, facile synthesis processes, and great potentials for a broad range of applications. As a new class of superstar semiconductors, CsPbX_3 NCs are essential materials for novel lighting, display, photodetector and photovoltaics devices. The simultaneous realization of property control, improving stability and reducing the content of toxic lead remains open questions. Pb~(2+)-site of CsPbX_3 host lattices is of extreme importance to determine its optoelectronic properties. Hence, introducing proper ions in Pb~(2+)-site via an effective and controllable strategy is the best way to solve these problems. In this review, we overview recent progress in understanding and controlling the doping of CsPbX_3 NCs. Firstly, the effects of metal ions doping on its optical and electrical properties are summarized. Then, the roles of anions of dopant and driving forces in dopant incorporation are discussed. In addition, various post-synthetic doping techniques and related mechanisms are highlighted. Finally, we provide suggestions for further research and potential development of doped-CsPbX3 NCs in the future.
引文
1 Protesescu L,Yakunin S,Bodnarchuk MI,Krieg F,Caputo R,Hendon CH,Yang RX,Walsh A,Kovalenko MV.Nano Lett,2015,15:3692-3696
    2 He XH,Qiu YC,Yang SH.Adv Mater,2017,32:1700775
    3 Kovalenko MV,Protesescu L,Bodnarchuk MI.Science,2017,358:745-750
    4 Buriak JM,Kamat PV,Schanze KS,Alivisatos AP,Murphy CJ,Schatz GC,Scholes GD,Stang PJ,Weiss PS.Chem Mater,2017,29:8915-8917
    5 Li X,Cao F,Yu D,Chen J,Sun Z,Shen Y,Zhu Y,Wang L,Wei Y,Wu Y,Zeng H.Small,2017,13:1603996
    6 Huang H,Polavarapu L,Sichert JA,Susha AS,Urban AS,Rogach AL.NPG Asia Mater,2016,8:e328
    7 Zhang Y,Liu J,Wang Z,Xue Y,Ou Q,Polavarapu L,Zheng J,Qi X,Bao Q.Chem Commun,2016,52:13637-13655
    8 Lou S,Xuan T,Yu C,Li H.Chin J Appl Chem,2016,33:977-993(in Chinese)[楼孙棋,宣瞳瞳,郁彩艳,李会利.应用化学,2016,33:977-993]
    9 Meyns M,Perálvarez M,Heuer-Jungemann A,Hertog W,Ibá?ez M,Nafria R,Gen?A,Arbiol J,Kovalenko MV,Carreras J,Cabot A,Kanaras AG.ACS Appl Mater Interfaces,2016,8:19579-19586
    10 Sun C,Zhang Y,Ruan C,Yin C,Wang X,Wang Y,Yu WW.Adv Mater,2016,28:10088-10094
    11 Dirin DN,Protesescu L,Trummer D,Kochetygov IV,Yakunin S,Krumeich F,Stadie NP,Kovalenko MV.Nano Lett,2016,16:5866-5874
    12 Wang HC,Lin SY,Tang AC,Singh BP,Tong HC,Chen CY,Lee YC,Tsai TL,Liu RS.Angew Chem Int Ed,2016,55:7924-7929
    13 Liu Y,Li F,Liu Q,Xia Z.Chem Mater,2018,30:6922-6929
    14 Li Z,Kong L,Huang S,Li L.Angew Chem Int Ed,2017,56:8134-8138
    15 Li ZJ,Hofman E,Li J,Davis AH,Tung CH,Wu LZ,Zheng W.Adv Funct Mater,2018,28:1704288
    16 Chen W,Hao J,Hu W,Zang Z,Tang X,Fang L,Niu T,Zhou M.Small,2017,13:1604085
    17 Wei Y,Xiao H,Xie Z,Liang S,Liang S,Cai X,Huang S,Al Kheraif AA,Jang HS,Cheng Z,Lin J.Adv Opt Mater,2018,6:1701343
    18 Tang X,Zu Z,Zang Z,Hu Z,Hu W,Yao Z,Chen W,Li S,Han S,Zhou M.Sensor Actuat B-Chem,2017,245:435-440
    19 Xuan T,Lou S,Huang J,Cao L,Yang X,Li H,Wang J.Nanoscale,2018,10:9840-9844
    20 Woo JY,Kim Y,Bae J,Kim TG,Kim JW,Lee DC,Jeong S.Chem Mater,2017,29:7088-7092
    21 Abdi-Jalebi M,Andaji-Garmaroudi Z,Cacovich S,Stavrakas C,Philippe B,Richter JM,Alsari M,Booker EP,Hutter EM,Pearson AJ,Lilliu S,Savenije TJ,Rensmo H,Divitini G,Ducati C,Friend RH,Stranks SD.Nature,2018,555:497-501
    22 Ai B,Liu C,Wang J,Xie J,Han J,Zhao X.J Am Ceram Soc,2016,99:2875-2877
    23 Yuan R,Shen L,Shen C,Liu J,Zhou L,Xiang W,Liang X.Chem Commun,2018,54:3395-3398
    24 Nedelcu G,Protesescu L,Yakunin S,Bodnarchuk MI,Grotevent MJ,Kovalenko MV.Nano Lett,2015,15:5635-5640
    25 Akkerman QA,D’Innocenzo V,Accornero S,Scarpellini A,Petrozza A,Prato M,Manna L.J Am Chem Soc,2015,137:10276-10281
    26 Zhang D,Yang Y,Bekenstein Y,Yu Y,Gibson NA,Wong AB,Eaton SW,Kornienko N,Kong Q,Lai M,Alivisatos AP,Leone SR,Yang P.J Am Chem Soc,2016,138:7236-7239
    27 Zheng W,Huang P,Gong Z,Tu D,Xu J,Zou Q,Li R,You W,Bünzli JCG,Chen X.Nat Commun,2018,9:3462
    28 Yang B,Chen J,Hong F,Mao X,Zheng K,Yang S,Li Y,Pullerits T,Deng W,Han K.Angew Chem Int Ed,2017,56:12471-12475
    29 Zuo C,Ding L.Angew Chem Int Ed,2017,56:6528-6532
    30 Wu C,Zhang Q,Liu Y,Luo W,Guo X,Huang Z,Ting H,Sun W,Zhong X,Wei S,Wang S,Chen Z,Xiao L.Adv Sci,2017,5:1700759
    31 Zhang Q,Yin Y.ACS Cent Sci,2018,4:668-679
    32 Mocatta D,Cohen G,Schattner J,Millo O,Rabani E,Banin U.Science,2011,332:77-81
    33 De A,Mondal N,Samanta A.Nanoscale,2017,9:16722-16727
    34 Wang HC,Wang W,Tang AC,Tsai HY,Bao Z,Ihara T,Yarita N,Tahara H,Kanemitsu Y,Chen S,Liu RS.Angew Chem Int Ed,2017,56:13650-13654
    35 Swarnkar A,Ravi VK,Nag A.ACS Energy Lett,2017,2:1089-1098
    36 Wang Q,Zhang X,Jin Z,Zhang J,Gao Z,Li Y,Liu SF.ACS Energy Lett,2017,2:1479-1486
    37 Li J,Gai Y,Kang J,Li SS,Xia JB.Chin Sci Bull,2018,63:365-370(in Chinese)[李京波,盖艳琴,康俊,李树深,夏建白.科学通报,2018,63:365-370]
    38 Yang Y,You J.Nature,2017,544:155-156
    39 Amgar D,Binyamin T,Uvarov V,Etgar L.Nanoscale,2018,10:6060-6068
    40 Wu H,Yang Y,Zhou D,Li K,Yu J,Han J,Li Z,Long Z,Ma J,Qiu J.Nanoscale,2018,10:3429-3437
    41 Baek S,Kim S,Noh JY,Heo JH,Im SH,Hong KH,Kim SW.Adv Opt Mater,2018,6:1800295
    42 Swarnkar A,Mir WJ,Nag A.ACS Energy Lett,2018,3:286-289
    43 Liu W,Lin Q,Li H,Wu K,Robel I,Pietryga JM,Klimov VI.J Am Chem Soc,2016,138:14954-14961
    44 Bai S,Yuan Z,Gao F.J Mater Chem C,2016,4:3898-3904
    45 Ji T,Tian Y.Chem J Chin Univ,2018,39:1113-1120(in Chinese)[嵇天浩,田颜清.高等学校化学学报,2018,39:1113-1120]
    46 Wei Y,Chen Y,Cheng Z,Lin J.Sci Sin Chim,2018,48:771-789(in Chinese)[韦祎,陈叶青,程子泳,林君.中国科学:化学,2018,48:771-789]
    47 Zhou Y,Chen J,Bakr OM,Sun HT.Chem Mater,2018,30:6589-6613
    48 van der Stam W,Geuchies JJ,Altantzis T,van den Bos KHW,Meeldijk JD,van Aert S,Bals S,Vanmaekelbergh D,de Mello Donega C.J Am Chem Soc,2017,139:4087-4097
    49 Zou S,Liu Y,Li J,Liu C,Feng R,Jiang F,Li Y,Song J,Zeng H,Hong M,Chen X.J Am Chem Soc,2017,139:11443-11450
    50 Yong ZJ,Guo SQ,Ma JP,Zhang JY,Li ZY,Chen YM,Zhang BB,Zhou Y,Shu J,Gu JL,Zheng LR,Bakr OM,Sun HT.J Am Chem Soc,2018,140:9942-9951
    51 Zhang X,Cao W,Wang W,Xu B,Liu S,Dai H,Chen S,Wang K,Sun XW.Nano Energy,2016,30:511-516
    52 Vitoreti ABF,Agouram S,Solis de la Fuente M,Mu?oz-SanjoséV,Schiavon MA,Mora-SeróI.J Phys Chem C,2018,122:14222-14231
    53 Li M,Zhang X,Matras-Postolek K,Chen HS,Yang P.J Mater Chem C,2018,6:5506-5513
    54 Parobek D,Roman BJ,Dong Y,Jin H,Lee E,Sheldon M,Son DH.Nano Lett,2016,16:7376-7380
    55 Liu H,Wu Z,Shao J,Yao D,Gao H,Liu Y,Yu W,Zhang H,Yang B.ACS Nano,2017,11:2239-2247
    56 Lin CC,Xu KY,Wang D,Meijerink A.Sci Rep,2017,7:45906
    57 Xu K,Lin CC,Xie X,Meijerink A.Chem Mater,2017,29:4265-4272
    58 Das Adhikari S,Dutta SK,Dutta A,Guria AK,Pradhan N.Angew Chem Int Ed,2017,56:8746-8750
    59 Huang G,Wang C,Xu S,Zong S,Lu J,Wang Z,Lu C,Cui Y.Adv Mater,2017,29:1700095
    60 Mir WJ,Jagadeeswararao M,Das S,Nag A.ACS Energy Lett,2017,2:537-543
    61 Yuan X,Ji S,De Siena MC,Fei L,Zhao Z,Wang Y,Li H,Zhao J,Gamelin DR.Chem Mater,2017,29:8003-8011
    62 Zhu J,Yang X,Zhu Y,Wang Y,Cai J,Shen J,Sun L,Li C.J Phys Chem Lett,2017,8:4167-4171
    63 Xu W,Li F,Lin F,Chen Y,Cai Z,Wang Y,Chen X.Adv Opt Mater,2017,5:1700520
    64 Akkerman QA,Meggiolaro D,Dang Z,De Angelis F,Manna L.ACS Energy Lett,2017,2:2183-2186
    65 Gao D,Qiao B,Xu Z,Song D,Song P,Liang Z,Shen Z,Cao J,Zhang J,Zhao S.J Phys Chem C,2017,121:20387-20395
    66 Li F,Xia Z,Gong Y,Gu L,Liu Q.J Mater Chem C,2017,5:9281-9287
    67 Chen D,Fang G,Chen X.ACS Appl Mater Interfaces,2017,9:40477-40487
    68 Shao H,Bai X,Cui H,Pan G,Jing P,Qu S,Zhu J,Zhai Y,Dong B,Song H.Nanoscale,2018,10:1023-1029
    69 Liu H,Wu Z,Gao H,Shao J,Zou H,Yao D,Liu Y,Zhang H,Yang B.ACS Appl Mater Interfaces,2017,9:42919-42927
    70 Li F,Xia Z,Pan C,Gong Y,Gu L,Liu Q,Zhang JZ.ACS Appl Mater Interfaces,2018,10:11739-11746
    71 Usman MHP,Bakthavatsalam R,Kundu J.ChemistrySelect,2018,3:6585-6595
    72 Wang F,Yang M,Ji S,Yang L,Zhao J,Liu H,Sui Y,Sun Y,Yang J,Zhang X.J Power Sources,2018,395:85-91
    73 Begum R,Parida MR,Abdelhady AL,Murali B,Alyami NM,Ahmed GH,Hedhili MN,Bakr OM,Mohammed OF.J Am Chem Soc,2017,139:731-737
    74 Liu M,Zhong G,Yin Y,Miao J,Li K,Wang C,Xu X,Shen C,Meng H.Adv Sci,2017,4:1700335
    75 Pan G,Bai X,Yang D,Chen X,Jing P,Qu S,Zhang L,Zhou D,Zhu J,Xu W,Dong B,Song H.Nano Lett,2017,17:8005-8011
    76 Hu Q,Li Z,Tan Z,Song H,Ge C,Niu G,Han J,Tang J.Adv Opt Mater,2018,6:1700864
    77 Yao JS,Ge J,Han BN,Wang KH,Yao HB,Yu HL,Li JH,Zhu BS,Song JZ,Chen C,Zhang Q,Zeng HB,Luo Y,Yu SH.J Am Chem Soc,2018,140:3626-3634
    78 Zhou D,Liu D,Pan G,Chen X,Li D,Xu W,Bai X,Song H.Adv Mater,2017,29:1704149
    79 Atkins PW,Overton T,Rourke J,Weller M,Armstrong F.Shriver&Atkins’Inorganic Chemistry.5th Ed.Oxford:Oxford University Press,2010
    80 Jüstel T,Nikol H,Ronda C.Angew Chem Int Ed,1998,37:3084-3103
    81 Santra PK,Kamat PV.J Am Chem Soc,2012,134:2508-2511
    82 Guria AK,Dutta SK,Adhikari SD,Pradhan N.ACS Energy Lett,2017,2:1014-1021
    83 Wu H,Xu S,Shao H,Li L,Cui Y,Wang C.Nanoscale,2017,9:16858-16863
    84 Arunkumar P,Gil KH,Won S,Unithrattil S,Kim YH,Kim HJ,Im WB.J Phys Chem Lett,2017,8:4161-4166
    85 Fang G,Chen D,Zhou S,Chen X,Lei L,Zhong J,Ji Z.J Mater Chem C,2018,6:5908-5915
    86 Das Adhikari S,Dutta A,Dutta SK,Pradhan N.ACS Energy Lett,2018,3:1247-1253
    87 Erwin SC,Zu L,Haftel MI,Efros AL,Kennedy TA,Norris DJ.Nature,2005,436:91-94
    88 Norris DJ,Efros AL,Erwin SC.Science,2008,319:1776-1779
    89 Pradhan N,Das Adhikari S,Nag A,Sarma DD.Angew Chem Int Ed,2017,56:7038-7054
    90 Zhang J,Di Q,Liu J,Bai B,Liu J,Xu M,Liu J.J Phys Chem Lett,2017,8:4943-4953
    91 Buonsanti R,Milliron DJ.Chem Mater,2013,25:1305-1317
    92 Huang H,Bodnarchuk MI,Kershaw SV,Kovalenko MV,Rogach AL.ACS Energy Lett,2017,2:2071-2083
    93 Akkerman QA,RainòG,Kovalenko MV,Manna L.Nat Mater,2018,17:394-405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700