人工湿地-微生物燃料电池耦合系统的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Microbial Fuel Cell Coupled Constructed Wetlands
  • 作者:王国振 ; 温洪宇 ; 蔡嘉颖 ; 袁振亚 ; 王秀颖 ; 苏思婷
  • 英文作者:WANG Guo-zhen;WEN Hong-yu;CAI Jia-ying;YUAN Zhen-ya;WANG Xiu-ying;SU Si-ting;School of Life Sciences,Jiangsu Normal University;
  • 关键词:CW-MFC ; 电极材料 ; 水利条件 ; 湿地植物 ; 产电微生物
  • 英文关键词:CW-MFC;;electrode material;;water conservancy conditions;;wetland plants;;electricigen
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:江苏师范大学生命科学学院;
  • 出版日期:2018-09-25 14:52
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.318
  • 基金:国家级大学生实践创新创业训练计划(201610320026)
  • 语种:中文;
  • 页:SWJT201901025
  • 页数:8
  • CN:01
  • ISSN:11-2396/Q
  • 分类号:205-212
摘要
人工湿地-微生物燃料电池耦合系统(CW-MFC)是一种将人工湿地技术(CW)和微生物燃料电池技术(MFC)结合在一起的新型污水处理系统,其产电机理是产电微生物在底层湿地(阳极)的厌氧条件下生成电子,通过外电路传递到表面湿地(阴极)完成氧化还原反应。但是,近几年来,关于CW-MFC研究的文章较少且研究深度较浅。综述了电极材料、水力条件、湿地植物及微生物等条件对CW-MFC污水处理能力和产电能力的影响。在电极材料方面,选用导电性、吸附性及有效面积大的材料作为电极可有效提高CW-MFC产电与去污能力;在水利条件方面,在HRT为2-3 d的条件下,应选用升流式或升流-降流式的入水方式;湿地植物方面,种植湿地植物的CW-MFC在去污和产电能力上都要优于未种植植物的CW-MFC;微生物方面,阴极与阳极的微生物群落结构存在明显的差异,但存在的产电菌的种类却十分相似。CW-MFC中存在的常见产电微生物主要包括地杆菌属(Geobacter)、脱硫叶菌属(Desulfobulbus)、假单胞菌属(Pseudomona)和脱硫弧菌属(Desulfovibrio)等。最后对CW-MFC的研究方向进行了分析,以期为CW-MFC的实际应用提供理论依据。
        Microbial fuel cell coupled constructed wetlands(CW-MFC)is a new type of wastewater treatment system that combinesconstructed wetland(CW)and microbial fuel cell(MFC). The electricigen generate electrons in the wetland of underlying where ananaerobic environment(anode)is,and the electrons cross the external circuits to surface wetland(cathode)to complete the redox reaction.However,the research on the CW-MFC in recent years is rare and simple. In this paper,the effects of electrode materials,water conservancyconditions,wetland plants and microbes on wastewater treatment capacity and electricity-generating capacity of CW-MFC are reviewed. Forelectrode materials,the power generation and decontamination ability of CW-MFC could be effectively improved while using materials withhigh conductivity,adsorption,and large effective area as electrodes. Regarding water conservancy conditions,the up flow or up flow-downflow type of water inlet should be used in CW-MFC under the condition of HRT of 2-3 d. Considering wetland plants,the CW-MFC plantedwith wetland plants is superior to those without wetland plants in terms of decontamination and electricity production. On microbes,there aresignificant differences in the microbial community structure between the cathode and the anode;however,the composition of the electricigenis very similar. The types of common electricigen in CW-MFC include Geobacter,Desulfobulbus,Pseudomona and Desulfovibrio,etc.,respectively. Finally,the challenges and research directions of CW-MFC are analyzed briefly. This review aims to provide reliable experimentalreference and theoretical basis for CW-MFC's future application.
引文
[1]Cooper PF, Boon AG. The use of Phragmites for wastewater treatmentby the root-zone method:the UK approach[M]//Reddy KR, SmithWH. In Aquatic Plants for Water Treatment and Resource Recovery.Orlando:Magnolia Publishing Inc,1987:471-478.
    [2]Hallberg KB, Johnson DB. Biological manganese removal from acidmine drainage in constructed wetlands and prototype bioreactors[J]. Sci Total Environ, 2005, 338(1-2):115-124.
    [3]Vymazal J. Constructed wetlands for treatment of industrialwastewaters:a review[J]. Ecological Engineering, 2014, 73:724-751.
    [4]Wu H, Zhang J, Ngo HH, et al. A review on the sustainabilityof constructed wetlands for wastewater treatment:design andoperation[J]. Bioresource Technology, 2015, 175:594-601.
    [5]Ghrabi A, Bousselmi L, Masi F, et al. Constructed wetland as aLow cost and sustainable solution for wastewater treatment adaptedto rural settlements:the chorfech wastewater treatment pilotplant[J]. Water Science and Technology, 2011, 63(12):3006-3012.
    [6]Potter MC. Electrical effects accompanying the decompositionof organic compounds[J]. Proceedings of the Royal Society ofLondon, 1911, 84(571):260-276.
    [7]Yadav AK, Dash P, Mohanty A, et al. Performance assessment ofinnovative constructed wetland-microbial fuel cell for electricityproduction and dye removal[J]. Ecological Engineering, 2012,47:126-131.
    [8]Villasenor J, Capilla P, Rodrigo MA, et al. Operation of a horizontalsubsurface flow constructed wetland e microbial fuel cell treatingwastewater under different organic loading rates[J]. WaterResearch, 2013, 47:6731-6738.
    [9]Doherty L, Zhao Y, Zhao X, et al. Nutrient and organics removalfrom swine slurry with simultaneous electricity generation in an alumsludge-based constructed wetland incorporating microbial fuel celltechnology[J]. Chemical Engineering Journal, 2015, 266:74-81.
    [10]Lee Y, Oa SW. High speed municipal sewage treatment inmicrobial fuel cell integrated with anaerobic membrane filtrationsystem[J]. Water Science and Technology, 2014, 69(12):2548-2553.
    [11]Mohanakrishna G, Abu-Reesh IM, AL-Raoush RI. Biologicalanodicoxidationandcathodicreductionreactionsforimproved bioelectrochemical treatment of petroleum refinerywastewater[J]. Journal of Cleaner Production, 2018, 190:44-52.
    [12]Fang Z, Song HL, Cang N, et al. Electricity production from azo dyewastewater using a microbial fuel cell coupled constructed wetlandoperating under different operating conditions[J]. BiosensBioelectron, 2015, 68:135-141.
    [13]Villasenor J, Capilla P, Rodrigo MA, et al. Operation of a horizontalsubsurface flow constructed wetland-microbial fuel cell treatingwastewater under different organic loading rates[J]. WaterResearch, 2013, 47(17):6731-6738.
    [14]Wang J, Song X, Wang Y, et al. Microbial community structure ofdifferent electrode materials in constructed wetland incorporatingmicrobial fuel cell[J]. Bioresource Technology, 2016, 221:697-702.
    [15]Xu L, Zhao Y, Doherty L, et al. Promoting the bio-cathode formationof a constructed wetland-microbial fuel cell by using powderactivated carbon modified alum sludge in anode chamber[J]. SciRep, 2016, 6:26514.
    [16]Dordio AV, Carvalho AJP. Organic xenobiotics removal inconstructed wetlands, with emphasis on the importance of thesupport matrix[J]. J Hazard Mater, 2013, 252:272-292.
    [17]Chen Z, Huang Y-C, Liang J-H, et al. A novel sediment microbialfuelcellwithabiocathodeinthericerhizosphere[J].Bioresource Technology, 2012, 108:55-59.
    [18]Liu S, Feng X, Li X. Bioelectrochemical approach for control ofmethane emission from wetlands[J]. Bioresource Technology,2017, 241:812-820.
    [19]Fang Z, Song HL, Cang N, et al. Performance of microbial fuel cellcoupled constructed wetland system for decolorization of azo dyeand bioelectricity generation[J]. Bioresource Technology, 2013,144:165-171.
    [20]Oon YL, Ong SA, Ho LN, et al. Role of macrophyte and effect ofsupplementary aeration in up-flow constructed wetland-microbialfuel cell for simultaneous wastewater treatment and energyrecovery[J]. Bioresource Technology, 2017, 224:265-275.
    [21]Arends JBA, Speeckaert J, Blondeel E, et al. Greenhouse gasemissions from rice microcosms amended with a plant microbialfuel cell[J]. Appl Microbiol Biotechnol, 2014, 98(7):3205-3217.
    [22]Liu S, Song H, Li X, et al. Power generation enhancement byutilizing plant photosynthate in microbial fuel cell coupledconstructed wetland system[J]. International Journal OfPhotoenergy, 2013. ID:172010.
    [23]Liu S, Song H, Wei S, et al. Bio-cathode materials evaluation andconfiguration optimization for power output of vertical subsurfaceflow constructed wetland-microbial fuel cell systems[J].Bioresource Technology, 2014, 166:575-583.
    [24]Leang C, Malvankar NS, Franks AE, et al. Engineering Geobactersulfurreducens to produce a highly cohesive conductive matrixwith enhanced capacity for current production[J]. Energy&Environmental Science, 2013, 6(6):1901-1908.
    [25]Fu Y, Xu Q, Zai X, et al. Low electrical potential anode modifiedwith Fe/ferric oxide and its application in marine benthic microbialfuel cell with higher voltage and power output[J]. AppliedSurface Science, 2014, 289:472-477.
    [26]Zhou YL, Yang Y, Chen M, et al. To improve the performanceof sediment microbial fuel cell through amending colloidal ironoxyhydroxide into freshwater sediments[J]. BioresourceTechnology, 2014, 159:232-239.
    [27]Corbella C, Garfi M, Puigagut J. Vertical redox profiles in treatmentwetlands as function of hydraulic regime and macrophytespresence:surveying the optimal scenario for microbial fuel cellimplementation[J]. Sci Total Environ, 2014, 473:751-751.
    [28]Xu L, Zhao Y, Fan C, et al. First study to explore the feasibilityof applying microbial fuel cells into constructed wetlands for codmonitoring[J]. Bioresource Technology, 2017, 243:846-854.
    [29]Freguia S, Rabaey K, Yuan Z, et al. Sequential anode-cathodeconfiguration improves cathodic oxygen reduction and effluentquality of microbial fuel cells[J]. Water Research, 2008, 42(6-7):1387-1396.
    [30]Wen HY, Wang GZ, Huang WM, et al. The influence of communitystructure of anode biofilms on microbial fuel cells bioelectricitygeneration using different inocula[J]. International Journal ofEngineering Science and Generic Research, 2018, 4(2):375-386.
    [31]Wang J, Song X, Wang Y, et al. Bioenergy generation andrhizodegradation as affected by microbial community distribution ina coupled constructed wetland-microbial fuel cell system associatedwith three macrophytes[J]. Sci Total Environ, 2017, 607:53-62.
    [32]Jiang X, Shen J, Lou S, et al. Comprehensive comparison ofbacterial communities in a membrane-free bioelectrochemicalsystemforremovingdifferentmononitrophenolsfromwastewater[J]. Bioresource Technology, 2016, 216:645-652.
    [33]Wang J, Song X, Wang Y, et al. Nitrate removal and bioenergyproduction in constructed wetland coupled with microbial fuelcell:establishment of electrochemically active bacteria communityon anode[J]. Bioresource Technology, 2016, 221:358-365.
    [34]Fang Z, Cao X, Li X, et al. Electrode and azo dye decolorizationperformance in microbial-fuel-cell-coupled constructed wetlandswith different electrode size during long-term wastewater treatment[J]. Bioresource Technology, 2017, 238:450-460.
    [35]Fernando E, Keshavarz T, Kyazze G. Complete degradation ofthe azo dye acid orange-7 and bioelectricity generation in anintegrated microbial fuel cell, aerobic two-stage bioreactor systemin continuous flow mode at ambient temperature[J]. BioresourceTechnology, 2014, 156:155-162.
    [36]Timmers RA, Strik DP, Hamelers HVM, et al. Long-term performance of a plant microbial fuel cell with Spartina anglica[J].Appl Microbiol Biotechnol, 2010, 86(3):973-981.
    [37]Lu L, Xing D, Ren ZJ. Microbial community structure accompaniedwith electricity production in a constructed wetland plant microbialfuel cell[J]. Bioresource Technology, 2015, 195:115-121.
    [38]DengH,WuYC,ZhangF,etal.Factorsaffectingtheperformance of singlechamber soil microbial fuel cells for powergeneration[J]. Pedosphere, 2014, 24(3):330-338.
    [39]Li T, Fang Z, Yu R, et al. The performance of the microbial fuelcell-coupled constructed wetland system and the influence of theanode bacterial community[J]. Environmental Technology,2016, 37(13):1683-1692.
    [40]Zou H, Wang Y. Azo dyes wastewater treatment and simultaneouselectricity generation in a novel process of electrolysis cellcombined with microbial fuel cell[J]. Bioresource Technology,2017, 235:167-175.
    [41]Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electrondonors for anaerobic respiration[J]. Environmental Microbiology,2004, 6(6):596-604.
    [42]Dos Santos, AB, Cervantes, FJ, Van Lier, JB. Review paper oncurrent technologies for decolourisation of textile wastewaters:Perspectives for anaerobic biotechnology[J]. BioresourceTechnology, 2007, 98(12):2369-2385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700