TDLAS测量电站锅炉炉内温度与气体组分浓度的应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of TDLAS on the Measurement of Temperature and Gas Concentration in Power Plant Boilers
  • 作者:崔青汝 ; 刘淼 ; 李雄威 ; 李庚达 ; 李应保 ; 陈保卫
  • 英文作者:CUI Qingru;LIU Miao;LI Xiongwei;LI Gengda;LI Yingbao;CHEN Baowei;China Energy Investment Corporation Limited;Guodian New Energy Technology Research Institute Co., Ltd.;
  • 关键词:炉内温度 ; 气体组分浓度 ; 在线测量 ; 可调谐二极管激光吸收光谱(TDLAS) ; 应用分析
  • 英文关键词:boiler furnace temperature;;gas concentration;;on-line measurement;;TDLAS;;application analysis
  • 中文刊名:ZGDL
  • 英文刊名:Electric Power
  • 机构:国家能源投资集团有限责任公司;国电新能源技术研究院有限公司;
  • 出版日期:2019-05-09 16:20
  • 出版单位:中国电力
  • 年:2019
  • 期:v.52;No.606
  • 基金:北京市科协金桥工程种子资金(2018B3TP00100)~~
  • 语种:中文;
  • 页:ZGDL201905005
  • 页数:6
  • CN:05
  • ISSN:11-3265/TM
  • 分类号:42-47
摘要
电站锅炉炉内温度和气体浓度分布在线测量对于控制优化炉内燃烧过程,提高燃烧效率和减少污染物排放具有重要意义。可调谐二极管激光吸收光谱(tunable diode laser absorption spectroscopy,TDLAS)技术在炉内温度与气体浓度在线测量上具有很大的应用潜力。从市场需求、市场阻碍因素、技术难点及投资回报4个方面对TDLAS在炉内温度与气体浓度测量上的应用进行分析,探讨了其工业应用需要解决的关键问题。总体来看,TDLAS技术的投资成本和维护成本相对较高,国内成功应用案例不多,但仍有较大的发展空间。
        On-line measurement of temperature and gas concentration distribution in power plant boilers is of great significance for controlling and optimizing the combustion process, improving the combustion efficiency and reducing the pollutant emissions.Tunable Diode Laser Absorption Spectroscopy(TDLAS) technology has great application prospect for on-line measurement of temperature and gas concentration inside the furnace. Therefore, in this paper, the application of TDLAS technology is analyzed in the aspects of market demand, market obstacles, technical difficulties and economic returns, and then the critical problems to be resolved in industrial applications are explored. Overall, due to the relatively high costs of investment and maintenance, there have been few successful applications of TDLAS technology in China. However, it still has considerable potential for its future development.
引文
[1]孙鹏帅.基于TDLAS技术的燃烧场温度与气体浓度分布重建研究[D].合肥:中国科学技术大学,2017.
    [2]张立芳,王飞,张海丹,等.基于可调谐激光吸收光谱技术的多条吸收谱线重建气体浓度二维分布的研究[J].光谱学与光谱分析,2016, 36(11):3485-3491.ZHANG Lifang, WANG Fei, ZHANG Haidan, et al. Reconstruction of two-dimensional distribution of gas concentration based on multiple absorption lines based on tunable laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(11):3485-3491.
    [3]陶波,胡志云,王晟,等.TDLAS技术测量燃烧流场温度研究[J].工程热物理学报,2014, 35(2):401-404.TAO Bo, HU Zhiyun, WANG Sheng, et al. Temperature measurement of combustion flow field by TDLAS technology[J].Journal of Engineering Thermophysics, 2014, 35(2):401-404.
    [4]夏晖晖,刘建国,许振宇,等.基于代数迭代算法的燃烧火焰温度场和气体浓度场重建研究[J].光谱学与光谱分析,2015, 35(10):2697-2702.XIA Huihui, LIU Jianguo, XU Zhenyu, et al. Reconstruction of combustion flame temperature field and gas concentration field basedon algebraic iteration algorithm[J]. Spectroscopy and Spectral Analysis,2015, 35(10):2697-2702.
    [5]王东风,刘千.电站锅炉炉膛温度测量技术发展[J].中国测试,2014, 40(3):8-12.WANG Dongfeng, LIU Qian. Development of furnace temperature measurement technology for utility boilers[J]. China Measurement&Test, 2014, 40(3):8-12.
    [6]张向宇.工业炉温度场可视化与辐射特性参数解耦重建研究[D].武汉:华中科技大学,2011.
    [7]杨斌,桂欣扬,周骛,等.利用辐射光谱法开展发动机燃烧火焰参数在线测量[J].航空动力学报,2015,30(12):2904-2909.YANG Bin, GUI Xinyang, ZHOU Wu, et al. Online measurement of engine combustion flame parameters using radiation spectrum method[J]. Journal of Aerospace Power, 2015, 30(12):2904-2909.
    [8]王启峰.火焰光谱数据特征提取、分析系统[D].西安:西安电子科技大学,2009.
    [9]王然,张志刚,孙保民,等.红外测温技术在炉膛温度场检测中的应用[J].热力发电,2017, 46(6):136-140.WANG Ran, ZHANG Zhigang, SUN Baomin, et al. Application of infrared temperature measurement technology in furnace temperature field detection[J]. Thermal Power Generation, 2017, 46(6):136-140.
    [10]胡锐,王伟,张雄星,等.基于纹影法的温度场分布测量方法[J].测控技术,2018, 37(04):97-100.HU Rui, WANG Wei, ZHANG Xiongxing, et al. Measurement method of temperature field distribution based on schlieren method[J]. Measurement&Control Technology, 2018, 37(04):97-100.
    [11]黄强锋.基于红外纹影层析技术的流场三维重建研究[D].南昌:南昌航空大学,2013.
    [12]何祥林,潘勇刚.TDLAS技术的发展现状及其应用研究[J].鄂州大学学报,2017, 24(1):102-104.HE Xianglin, PAN Yonggang. Development status and application of TDLAS technology[J]. Journal of Ezhou University, 2017, 24(1):102-104.
    [13]洪延姬.燃烧场吸收光谱诊断技术研究进展[J].实验流体力学,2014, 28(3):12-25.HONG Yanji. Research progress of diagnostic techniques for absorption spectrum of combustion field[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):12-25.
    [14]刘文清,陈臻懿,刘建国,等.大气污染光学遥感技术及发展趋势[J].中国环境监测,2018, 34(2):1-9.LIU Wenqing, CHEN Zhenyi, LIU Jianguo, et al. Optical remote sensing technology and development trend of air pollution[J].Environmental Monitoring in China, 2018, 34(2):1-9.
    [15]王涛.气体二氧化氯空间消毒动力学模型及消毒条件监测技术研究[D].北京:中国人民解放军军事医学科学院,2016.
    [16]高彦伟,张玉钧,陈东,等.基于可调谐半导体激光吸收光谱的氧气浓度测量研究[J].光学学报,2016, 36(3):275-281.GAO Yanwei, ZHANG Yujun, CHEN Dong, et al. Measurement of oxygen concentration based on tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2016, 36(3):275-281.
    [17]姜治深,王飞,邢大伟,等.可调谐半导体激光吸收光谱技术应用于平面火焰中气体浓度二维分布重建的研究[J].光谱学与光谱分析,2012,32(11):2891-2896.JIANG Zhishen, WANG Fei, XIN Dawei, et al. Application of tunable semiconductor laser absorption spectroscopy in reconstructing two-dimensional distribution of gas concentration in flame[J]. Spectroscopy and Spectral Analysis,2012, 32(11):2891-2896.
    [18] HUELSON E, LOGAN N, SAPPEY A D, et al. Carbon management for existing power plants via measurement and control optimization[R]. USA:National Energy Technology Laboratory,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700