Zn-Na_2CO_3复合改性HZSM-5在线催化生物质热解制备芳烃
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Production of Aromatic Hydrocarbon by Catalytic Pyrolysis Vapor Upgrading of Biomass with Zn-Na_2CO_3/HZSM-5 Mesoporous Catalyst
  • 作者:郑云武 ; 沈华杰 ; 王继大 ; 李文斌 ; 王珍 ; 郑志锋
  • 英文作者:Zheng Yunwu;Shen Huajie;Wang Jida;Li Wenbin;Wang Zhen;Zheng Zhifeng;National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources,Southwest Forestry University;College of Materials Science &Engineering,Southwest Forestry University;Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass(Xiamen University)/Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass/College of Energy,Xiamen University;
  • 关键词:生物质 ; 改性HZSM-5催化剂 ; 催化热解 ; 芳烃 ; 积碳
  • 英文关键词:biomass;;modified HZSM-5 catalyst;;catalytic pyrolysis;;aromatic hydrocarbon;;coke deposition
  • 中文刊名:YNLX
  • 英文刊名:Journal of Southwest Forestry University(Natural Sciences)
  • 机构:林业生物质资源高效利用技术国家地方联合工程研究中心西南林业大学;西南林业大学材料科学与工程学院;厦门市现代农业生物质高值化技术重点实验室(厦门大学)福建省生物质高值化技术工程研究中心(厦门大学)厦门大学能源学院;
  • 出版日期:2019-06-28
  • 出版单位:西南林业大学学报(自然科学)
  • 年:2019
  • 期:v.39;No.152
  • 基金:国家自然科学基金项目(31670599)资助;; 云南省科技厅项目(2018FB071)资助;; 云南省教育厅教师类项目(2018JS325)资助;; 云南省大学生创新创业项目(S201710677016)资助
  • 语种:中文;
  • 页:YNLX201904019
  • 页数:10
  • CN:04
  • ISSN:53-1218/S
  • 分类号:131-140
摘要
为进一步提高芳烃的产率,减少催化剂的失活,采用Zn和Na_2CO_3对HZSM-5催化剂复合改性,探讨了Zn的负载量对生物质催化热解气相重整制备芳烃的产率、选择性以及抗结焦性能的影响,同时采用XRD、BET、NH3-TPD以及SEM对反应前后催化剂进行表征。结果表明:ZnNa_2CO_3复合改性没有改变HZSM-5晶体骨架结构,Zn均匀的负载在催化剂的表面,比表面积随着Zn的负载量的增加而减少,孔径随着Zn的负载量的增加而加大;改性Zn-Na_2CO_3/HZSM-5催化剂具有较强的催化活性以及脱氧效果,有效的提高芳烃的产率,抑制了稠环芳烃以及焦炭的生成,使BTXE的选择性增加;当Zn的负载量为5%时,单环芳烃含量最高为88.05%,BEXT增加12.92%,而焦炭含量最低为23.69%。Zn的添加有效的提高了催化剂抗积碳能力,促进了氢转移反应的形成,使其芳构化能力提升。
        In order to further improve the yield, selectivity of aromatics and reduce the deactivation of catalysts, Zn and Na_2CO_3 were selected to modified the HZSM-5 zeolite catalyst, the effects of zinc loading on the yield, selectivity of aromatics and coking resistance from biomass catalytic pyrolysis by vapor phase upgrading were investigated, at the same time, the modified HZSM-5 catalysts before and after the reaction were characterized by X-ray diffraction(XRD), surface area and pore size analyzer(BET), temperature programmed desorption(NH3-TPD) and scanning electron microscope(SEM). The results show that the crystal skeleton structure of HZSM-5 were not changed by the modification of Zn and Na_2CO_3, which was distributed on the surface of the HZSM-5 catalyst uniformLy, the specific surface area were decreased with the increase of Zn loading and the pore size were enlarged with the increase of Zn loading; Zn-Na_2CO_3/HZSM-5 catalyst has strong catalytic activity and deoxidization effect, which exhibited better catalyst performance to improve bio-crude quality due to the additional decarbonylation, decarboxylation and dehydrogenation reactions induced by Zn loading and also could effectively increase the yield of aromatic hydrocarbons, inhibit the formation of polycyclic aromatic hydrocarbons and coke, simultaneously increase the selectivity of BTXE, 5% Zn-Na_2CO_3/HZSM-5 catalyst produced bio-crude with the highest hydrocarbons content at 88.05% and with the lowest coke content at 23.69%. The addition of Zn effectively improves the carbon deposition resistance, promotes the formation of hydrogen transfer reaction and enhances its aromatization ability.
引文
[1]Kabir G,Hameed B H.Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade biooil and bio-chemicals[J].Renewable and Sustainable Energy Reviews,2017,70:945-967.
    [2]Wang S,Dai G,Yang H,et al.Lignocellulosic biomass pyrolysis mechanism:a state-of-the-art review[J].Progress in Energy and Combustion Science,2017,62:33-86.
    [3]Morgan Jr H M,Bu Q,Liang J,et al.A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals[J].Bioresource technology,2017,230:112-121.
    [4]Schultz E L,Mullen C A,Boateng A A.Aromatic hydrocarbon production from Eucalyptus urophylla pyrolysis over several metal-modified ZSM-5 catalysts[J].Energy Technology,2017,5(1):196-204.
    [5]Zheng A,Jiang L,Zhao Z,et al.Catalytic fast pyrolysis of lignocellulosic biomass for aromatic production:chemistry,catalyst and process[J].Wiley Interdisciplinary Reviews:Energy and Environment,2017,6(3):e234.
    [6]Asadieraghi M,Daud W M A W,Abbas H F.Heterogeneous catalysts for advanced bio-fuel production through catalytic biomass pyrolysis vapor upgrading:a review[J].RSC Advances,2015,5(28):22234-22255.
    [7]Vichaphund S,Aht-ong D,Sricharoenchaikul V,et al.Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5prepared by ion-exchange and impregnation methods[J].Renewable Energy,2015,79:28-37.
    [8]Fathi S,Sohrabi M,Falamaki C.Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J].Fuel,2014,116:529-537.
    [9]Zhang Z,Cheng H,Chen H,et al.Catalytic fast pyrolysis of rice straw to aromatics over hierarchical HZ-SM-5 treated with different organosilanes[J].Energy&Fuels,2018.
    [10]Wang L,Lei H,Bu Q,et al.Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor[J].Fuel,2014,129:78-85.
    [11]Zheng Y,Wang F,Yang X,et al.Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J].Journal of Analytical and Applied Pyrolysis,2017,126:169-179.
    [12]Zhao X,Wei L,Cheng S,et al.Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zncatalyst[J].Fuel Processing Technology,2015,139:117-126.
    [13]Khoshbin R,Haghighi M.Direct syngas to DME as a clean fuel:the beneficial use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst[J].Chemical Engineering Research and Design,2019,91(6):1111-1122.
    [14]Breen J P,Burch R,Kulkarni M,et al.Improved selectivity in the toluene alkylation reaction through understanding and optimising the process variables[J].Applied Catalysis A:General,2007,316(1):53-60.
    [15]Li B,Li S,Li N,et al.Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization[J].Microporous and mesoporous materials,206,88(1/3):244-253.
    [16]Cheng S,Wei L,Julson J,et al.Catalytic liquefaction of pine sawdust for biofuel development on bifunctional Zn/HZSM-5 catalyst in supercritical ethanol[J].Journal of Analytical and Applied Pyrolysis,2017,126:257-266.
    [17]Cheng S,Wei L,Rabnawaz M.Catalytic liquefaction of pine sawdust and in-situ hydrogenation of bio-crude over bifunctional Co-Zn/HZSM-5 catalysts[J].Fuel,2018,223:252-260.
    [18]Long X,Zhang Q,Liu Z T,et al.Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether[J].Applied Catalysis B:Environmental,2013,134:381-388.
    [19]Li J,Li X,Zhou G,et al.Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J].Applied Catalysis A:General,2014,470:115-122.
    [20]孙玉建,骞伟中,魏飞.Zn/ZSM-5分子筛催化剂上乙烯芳构化研究[J].过程工程学报,2009(S2):51-55.
    [21]Zhao X,Wei L,Julson J,et al.Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts[J].Korean Journal of Chemical Engineering,2015,32(8):1528-1541.
    [22]Thangalazhy-Gopakumar S,Adhikari S,Gupta R B.Catalytic pyrolysis of biomass over H+ZSM-5 under hydrogen pressure[J].Energy&fuels,2012,26(8):5300-5306.
    [23]Weng Y,Qiu S,Ma L,et al.Jet-fuel range hydrocarbons from biomass-derived sorbitol over Ni-HZSM-5/SBA-15 catalyst[J].Catalysts,2015,5(4):2147-2160.
    [24]Li X,Su L,Wang Y,et al.Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons[J].Frontiers of Environmental Science&Engineering,2012,6(3):295-303.
    [25]尹双凤,林洁,于中伟.锌含量对Zn/HZSM-5催化剂性能的影响[J].催化学报,2001,22(1):57-61.
    [26]赵晓东,方向晨,贾立明,等.改性HZSM-5分子筛催化剂芳构化性能研究[J].工业催化,2012,20(3):48-52.
    [27]Nikbin N,Do P T,Caratzoulas S,et al.A DFT study of the acid-catalyzed conversion of 2,5-dimethylfuran and ethylene to p-xylene[J].Journal of catalysis,2013,297:35-43.
    [28]Ni Y,Sun A,Wu X,et al.Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction[J].Journal of Natural Gas Chemistry,2011,20(3):237-242.
    [29]Guoqiang Z,Weikun Y A O,Yujue W,et al.Production of renewable petrochemicals from catalytic copyrolysis of beech wood and low-density polyethylene with mesoporous bifunctional ZSM-5 zeolites[J].Applied Mechanics&Materials,2015,768:392-408.
    [30]李小华,陈磊,樊永胜,等.Zn-P复合改性HZSM-5在线催化热解获取生物油的研究[J].燃料化学学报,2015,43(05):567-574.
    [31]Shao S,Zhang H,Xiao R,et al.Catalytic conversion of furan to hydrocarbons using HZSM-5:Coking behavior and kinetic modeling including coke deposition[J].Energy Technology,2017,5(1):111-118.
    [32]郑云武,杨晓琴,沈华杰,等.改性微-介孔催化剂的制备及其催化生物质热解制备芳烃[J].农业工程学报,2018,34(21):240-249.
    [33]Zhang G,Zhang X,Bai T,et al.Coking kinetics and influence of reaction-regeneration on acidity,activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization[J].Journal of Energy Chemistry,2015,24(1):108-118.
    [34]Zhang B,Zhong Z P,Wang X B,et al.Catalytic upgrading of fast pyrolysis biomass vapors over fresh,spent and regenerated ZSM-5 zeolites[J].Fuel Processing Technology,2015,138:430-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700