长江流域近七十年空中水资源的时空变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Variation of Air Water Resources in the Yangtze River Basin in Recent Seventy Years
  • 作者:陈婷 ; 敖天其 ; 黎小东
  • 英文作者:CHEN Ting;AO Tian-qi;LI Xiao-dong;Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province;State Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resources and Hydropower,Sichuan University;
  • 关键词:长江流域 ; 水资源 ; 水汽输送
  • 英文关键词:Yangtze River Basin;;water resources;;water vapor transport
  • 中文刊名:ZNSD
  • 英文刊名:China Rural Water and Hydropower
  • 机构:高原与盆地暴雨旱涝灾害四川省重点实验室;四川大学水利水电学院水力学与山区河流开发保护国家重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:中国农村水利水电
  • 年:2019
  • 期:No.439
  • 基金:国家自然科学基金面上项目(50979062);; 高原与盆地暴雨旱涝灾害四川省重点实验室科技发展基金项目(省重实验室2018-青年-09);; 四川省科技厅重点研发项目(2018SZ0343)
  • 语种:中文;
  • 页:ZNSD201905002
  • 页数:6
  • CN:05
  • ISSN:42-1419/TV
  • 分类号:11-16
摘要
通过1948-2017年NCEP/NCAR的再分析月平均资料,分析了长江流域水汽总量和水汽输送的气候特征。分析表明:①长江流域大气可降水量年平均值和干湿两季可降水量年平均值均呈减少趋势,线性变化率为-0.6、-6.4×10~(-4)和-0.1 kg/(m~2·decade),大气可降水量的峰值期为20世纪60年代初和20世纪90年代,谷值期位于20世纪70年代和21世纪头几年。②从长江流域可降水量空间分布来看,大气可降水量呈现上游少,中下游多的特征,这与长江中下游水汽来源丰富有关,干湿两季大气可降水量的空间分布与年大气可降水量平均分布较为一致,湿季大气可降水量(9~45 kg/m~2)是干季(3~21 kg/m~2)的两倍左右。③长江流域大气可降水量气候倾向率以弱下降为主,长江流域上游地区最大降幅为-0.6 kg/(m~2·decade),长江中下游地区最大降幅为-0.2 kg/(m~2·decade)。④长江流域水汽来源有西太平洋、南海、孟加拉湾、印度洋以及偏西风带来的水汽。受季风的影响,干湿两季水汽输送通道差异较大;长江流域上游和下游均有水汽辐合中心,辐合中心与暴雨区对应关系较好。而流域中游降水的水汽主要贡献量并非来源于其他地区的输送。湿季的辐合区域增大,中心值增大,而干季除上游部分地方为水汽辐合区外,其余地方主要为水汽辐散区。
        Based on the reanalysis monthly mean data of NCEP/NCAR from 1948 to 2017, the climatic characteristics of total water vapor and water vapor transport in the Yangtze River Basin are analyzed. The results show that: ① The annual mean and dry-wet seasonal mean of atmospheric precipitable water in the Yangtze River Basin show a decreasing trend. The linear variation rates are-0.6,-6.4×10~(-4) and-0.1 kg/(m~2·decade). The peak periods of atmospheric precipitable water are in the early 1960 s and 1990 s, the valley periods are in the 1970 s and 1990 s and the first few years of this century. ② According to the spatial distribution of precipitation in the Yangtze River Valley, the atmospheric precipitable water is less in the upper reaches and more in the middle and lower reaches of the Yangtze River, which is related to the abundant water vapor sources in the middle and lower reaches of the Yangtze River. It is about two times that of dry season(3~21 kg/m~2). ③ The climatic tendency of atmospheric precipitable water in the Yangtze River Basin is mainly weakly decreased, with the maximum decrease of-0.6 kg/(m~2·decade) in the upper reaches of the Yangtze River Basin and-0.2 kg/(m~2·decade) in the middle and lower reaches of the Yangtze River. ④ The sources of water vapor in the Yangtze River Basin are from the western Pacific, South China Sea, Bay of Bengal, Indian Ocean and westerly winds. Due to the influence of monsoon, the water vapor transport channel varies greatly between dry and wet seasons. There are water vapor convergence centers in the upper and lower reaches of the Yangtze River Basin,and the convergence centers correspond well with the rainstorm area. The main contribution of water vapor in the middle reaches of the basin is not due to the transportation in other areas. In the wet season,the convergence area increases and the center value increases. In the dry season,the water vapor divergence area mainly occurs in the middle and lower reaches,except for the upper part of the water vapor convergence area.
引文
[1] 姜彤,施雅风.气候变暖长江水灾与可能损失[J].地球科学进展,2003,18(2):277-284.
    [2] Jiang T,Su B,Hartmann H.Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin,1961-2000[J].Geomorphology,2007,85(3-4):0-154.
    [3] Zhang Qiang,Tong Jiang Marco Gemmeretal.Precipitation temperature and stream flow analysis from 1951 to 2002 in the Yangtze Catchment China[J].Hydrological Sciences Journal,2005,50(1):65-80.
    [4] 郭渠.长江上游地区可利用降水量的气候特征[J].湖泊科学,2011,23(1):112-121.
    [5] ZhangQiang,JiangTong,Liu Chunling.Changing trends of water level and runoff during past 100 years of the Yangtze River(China)[J].Asian Journal of Water,Environment and Pollution,2006,3(1):49-55.
    [6] Zhang Qiang,Xu Chong yu,Stefan Beckeretal.Sediment and runoff changes in the Yangtze River basin during past 50years[J].Journal of Hydrology,2006,331:511-523.
    [7] 王守荣,朱海川,程磊,等.全球水循环与水资源[M].北京:气象出版社,2003:89-101.
    [8] 陈隆勋,朱乾根,罗会邦,等.东亚季风[M].北京:气象出版社,1991:49-61.
    [9] 周长艳,李跃清.长江上游地区水汽输送的气候特征[J].长江科学院院报,2005,22(5):18-22.
    [10] 陆渝蓉,高国栋.我国大气中平均水汽含量与水分平衡的特征[J].气象学报,1984,42(3):301-310.
    [11] YasunariT,SuppiahR.Some problems on the interannual variability of Indonesian monsoon rainfall[J].In:Theon JS,FugonoNeds.Tropical rainfal lmeasurements.Deepak,Hampton,Va,1988:113-122.
    [12] 苗秋菊,徐祥德,张胜军.长江流域水汽收支与高原水汽输送分量“转换”特征[J].气象学报,2005,63(1):93-99.
    [13] 赵瑞霞.中国长江、黄河流域的水分收支与水分循环[D].北京:中国科学院研究生院,2004.
    [14] Starr VP.Direct measurement of the hemispheric poleward flux of water vapor[J].J Meteor Res,1955,14:217-225.
    [15] Chen TC.Global water vapor flux and maintenance duing FGGE[J].Mon Wea Rev,1985,113(10):1 801-1 819.
    [16] Chen TC,T zeng RY.Global-scale intra seasonal and annual variation of divergent water flux[J].Meteorol Atmos Phys,1990,44:3-15.
    [17] 徐淑英.我国的水汽输送和水分平衡[J].气象学报,1958,29(1):33-43.
    [18] 刘国伟,崔一峰.中国上空的涡动水汽输送[J].水科学进展,1991,2(3):145-153.
    [19] 徐祥德,陶诗言,王继志,等.青藏高原-季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报,2002(3):257-267.
    [20] 周长艳,李跃清.长江上游地区水汽输送的气候特征[J].长江科学院院报,2005,22(5):18-22.
    [21] 苗秋菊,徐祥德,张胜军.长江流域水汽收支与高原水汽输送分量“转换”特征[J].气象学报,2005,63(1):93-99.
    [22] MIAOQJ,XUXD,ZHANGSY.Whole layer water vapor budget of Yangtze River valley and moisture flux components transform in the key areas of the plateau[J].Acta Meteorological Sinica,2005,63:93-99.
    [23] 张增信,姜彤,张金池,等.长江流域水汽收支的时空变化与环流特征[J].湖泊科学,2008,20(6):733-740.
    [24] 赵瑞霞,吴国雄.长江江流域水分收支以及再分析资料可用性分析[J].气象学报,2007,65(3):416-427.
    [25] 周长艳,李跃清,李薇,等.高原东部及邻近地区水汽输送的气候特征[J].高原气象,2005,24(6):880-888.
    [26] 周长艳,蒋兴文,李跃清,等.高原东部及邻近地区空中水资源的气候变化特征[J].高原气象,2009,28(1):55-63.
    [27] 李江林,李照荣,杨建才.10年夏季西北地区水汽空间分布和时间变化分析[J].高原气象,2012,31(6):1 574-1 581.
    [28] 杨茜,李柯,高阳华,等.重庆地区空中水资源的时空分布特征[J].气象,2010,36(8):100-105.
    [29] 张万诚,万云霞,任菊章,等.水汽输送异常对2009年秋、冬季云南降水的影响研究[J].高原气象,2011,30(6):1 534-1 542.
    [30] 李跃清,张晓春.“雅安天漏”研究进展[J].暴雨灾害,2011,30(4):289-295.
    [31] 彭贵康,李志友,柴复新.雅安地形与降水的气候特征[J].高原气象,1985,4(3):230-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700