长航程AUV螺旋桨的数值设计及试航验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Design and Validation of Propeller for Long-range AUV
  • 作者:张若初 ; 董小倩 ; 王振宇 ; 黄琰 ; 俞建成 ; 杨晨俊
  • 英文作者:ZHANG Ruochu;DONG Xiaoqian;WANG Zhenyu;HUANG Yan;YU Jiancheng;YANG Chenjun;State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University;State Key Laboratory of Robotics, Shenyang Institute of Automation, Institute for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences;
  • 关键词:AUV ; 螺旋桨 ; 体积力 ; 实效伴流 ; RANS ; 不确定度分析
  • 英文关键词:AUV;;propeller;;body force;;effective wake;;RANS;;uncertainty analysis
  • 中文刊名:ZGZC
  • 英文刊名:Shipbuilding of China
  • 机构:上海交通大学海洋工程国家重点实验室;中国科学院机器人与智能制造创新研究院沈阳自动化研究所机器人学国家重点实验室;
  • 出版日期:2019-03-30
  • 出版单位:中国造船
  • 年:2019
  • 期:v.60;No.229
  • 基金:国家重点研发项目(2017YFCO305800)
  • 语种:中文;
  • 页:ZGZC201901014
  • 页数:13
  • CN:01
  • ISSN:31-1497/U
  • 分类号:147-159
摘要
基于RANS计算,开展长航程AUV螺旋桨的数值设计。该AUV设计航速仅2kn,要求阻力预报具有较高的精度;为此,各个方向的网格按相同尺度减小比率,设计了三套结构化网格,对阻力计算结果进行了数值不确定度分析。基于自航和敞水模拟,分析得到了实效伴流分布;应用升力线方法设计了适伴流最佳环量螺旋桨,采用螺旋桨进行了RANS自航模拟,预报了AUV的功率-转速-航速关系,并与湖试结果进行了初步比较,结果表明该方法具有良好的精度。
        Based on RANS simulation, a numerical methodology of propeller design is developed for low-speed and long-range AUVs. As design speed of the AUV under consideration is only 2 knots, high accuracy of resistance prediction is required. Numerical uncertainty in resistance simulation is analyzed based on three sets of structured grids having a unified refinement ratio of the grid. Effective wake profile is predicted via self-propulsion and open-water simulation, where the propeller is simulated with a body-force model. An optimal propeller in non-uniform effective wake is designed by means of the lifting-line theory. The delivered power and rotational speed of the propeller are predicted via unsteady RANS simulation of self-propulsion. A comparison of the RANS-prediction with the trial test indicates that the present numerical methodology is effective and reasonably accurate for design of the propeller on the low-speed AUV and prediction of the powering performance.
引文
[1]HOBSON B W,BELLINGHAM J G,KIEFT B,et al.Tethys-class long range AUVs-extending the endurance of propeller-driven cruising AUVs from days to weeks[C]//Southampton:Autonomous Underwater Vehicles(AUV),2012IEEE/OES.IEEE,2012:1-8.
    [2]CRIMMINS D,DEACUTIS C,HINCHEY E,et al.Use of a long endurance solar powered autonomous underwater vehicle(SAUV II)to measure dissolved oxygen concentrations in Greenwich Bay,Rhode Island,USA[C]//Brest:OCEANS 2005-Europe.IEEE,2005,2:896-901.
    [3]CAIRNS J,LARNICOl E,ANANTHAKRISHNAN P,et al.Design of AUV propeller based on a blade element method[C]//Nice:OCEANS'98.IEEE,1998,2:672-675.
    [4]高婷.潜水器螺旋桨和舵翼的优化设计[D].哈尔滨:哈尔滨工程大学,2013.
    [5]ALLOTTA B,PUGI L,BARTOLINI F,et al.Preliminary design and fast prototyping of an autonomous underwater vehicle propulsion system[J].Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment,2015,229(3):248-272.
    [6]ALLEN B,VORUS W S,PRESTERO T.Propulsion system performance enhancements on REMUS AUVs[C]//Providence,RI:OCEANS 2000.IEEE,2000,3:1869-1873.
    [7]D'Epagnier K P.AUV propellers:Optimal design and improving existing propellers for greater efficiency[C]//.Boston,MA:OCEANS 2006.IEEE,2006,1:1-7.
    [8]D'EPAGNIER K P.A computational tool for the rapid design and prototyping of propellers for underwater vehicles[D].Massachusetts:Massachusetts Institute of Technology,2007.
    [9]李龙,张宏伟,王延辉.无人自治水下航行器外形及推进系统优化设计[J].机械设计,2017,34(5):23-29.
    [10]HUSAINI M,SAMAD Z,ARSHAD M R.Optimum Design of URRG-AUV Propeller Using PVL[DB/OL].http://eprints.usm.my/13103/1/MV_Paper52_husaini.pdf.2008.
    [11]BELLINGHAM J G,ZHANG Y,KERWIN J E,et al.Efficient propulsion for the Tethys long-range autonomous underwater vehicle[C]//.Monterey,CA:Autonomous Underwater Vehicles(AUV),2010 IEEE/OES.IEEE,2010:1-7.
    [12]蔡昊鹏,苏玉民.扭矩平衡式水下机器人推进器研究[J].船舶力学,2009,13(2):210-216.
    [13]傅慧萍,THAD J M,CARRICA P M.一种基于体积力螺旋桨模型的自航计算方法[J].船舶力学,2015,19(7):791-796.
    [14]熊鹰,刘志华.自航船模和实船推进因子的数值预报方法研究[J].船舶力学,2013,17(S1):14-18.
    [15]PHILLIPS A B,TURNOCK S R,FURLONG M.Comparisons of CFD simulations and in-service data for the self propelled performance of an autonomous underwater vehicle[C]//.Seoul:27th Symposium on Naval Hydrodynamics,Korea,2008.
    [16]SáNCHEZ-CAJA A,MARTIO J,SAISTO I,et al.On the enhancement of coupling potential flow models to RANSsolvers for the prediction of propeller effective wakes[J].Journal of Marine Science and Technology,2015,20(1):104-117.
    [17]RIJPKEMA D,STARKE B,BOSSCHERS J.Numerical simulation of propeller-hull interaction and determination of the effective wake field using a hybrid RANS-BEM approach[C]//Tasmania:3rd International Symposium on Marin Propulsors,2013.
    [18]张楠,沈泓萃,姚惠之.阻力和流场的CFD不确定度分析探讨[J].船舶力学,2008,12(2):211-224.
    [19]邹璐.浅水中低速斜航船舶水动力预报及验证与确认分析[J].船舶力学,2016,20(7):841-848.
    [20]ITTC.Uncertainty analysis in CFD,verification and validation methodology and Procedures[R].Wuxi:ITTCRecommended Procedures and Guidelines 7.5-03-01-01,28th International Towing Tank Conference,2017.
    [21]HOUGH G R,ORDWAY D E.The generalized actuator disk[R].AD-433976,1964.
    [22]王国强,董世汤.船舶螺旋桨理论与应用[M].哈尔滨:哈尔滨工程大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700