微缺陷对B_2-NiAl高温涂层材料力学性能及失效机理的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Micro-defects on the Mechanical Properties and Failure Mechanism of B_2-NiAl High Temperature Coatings
  • 作者:黄霞 ; 王路生 ; 郑浩然 ; 田宇 ; 丁军 ; 宋鹍 ; 路世青
  • 英文作者:HUANG Xia;WANG Lu-sheng;ZHENG Hao-ran;TIAN Yu;DING Jun;SONG Kun;LU Shi-qing;School of Mechanical Engineering, Chongqing University of Technology;
  • 关键词:B2-NiAl ; 热障涂层 ; 失效机理 ; 力学性能 ; 分子动力学
  • 英文关键词:B2-NiAl;;thermal barrier coatings;;failure mechanism;;mechanical properties;;molecular dynamics
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:重庆理工大学机械工程学院;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金联合基金项目(U1530140);; 重庆市教育委员会科学技术研究项目(KJ1709224,KJ1600919);; 重庆市基础与前沿研究计划项目(CSTC2016JCYJA0517,CSTC2017JCYJAX0357);; 计算物理国防重点实验室基金(6142A0501020217)~~
  • 语种:中文;
  • 页:BMJS201901003
  • 页数:12
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:23-34
摘要
目的研究微缺陷对B_2-NiAl高温涂层材料在拉伸载荷作用下的变形行为和失效机理的影响。方法在考虑裂纹和孔洞等微缺陷的影响下,采用嵌入原子势函数(EAM)和分子动力学方法,模拟了完美B_2-NiAl涂层(Sample 1)、含中心对称微裂纹涂层(Sample 2)、含有中心微裂纹与单微孔洞涂层(Sample 3)和含有中心微裂纹与双微孔洞涂层(Sample 4)模型的失效过程,利用键对分析技术(CAN)、中心对称参数法(CSP)和径向分布函数(RDF),对涂层的变形过程和失效机理进行了分析表征。结果随着微缺陷的增加,高温材料的屈服应力会明显下降,弹性模量也会有所降低,屈服应变逐渐减小,但微孔洞会使涂层出现二次屈服现象。完美B_2-NiAl高温涂层在屈服后的位错和相变区域面积较小,分布比较均匀,在边界处萌发裂纹并沿(100)方向扩展,再沿着(111)方向扩展,直至失效。相比完美B_2-NiAl高温涂层,含有微裂纹和孔洞的涂层在屈服后的位错和相变区域较小,主要在裂纹尖端沿着<111>滑移系方向均匀分布,但其主裂纹沿着[100]方向扩展并导致断裂。结论微裂纹会降低B_2-NiAl高温涂层的强度,但微孔洞会提高其塑性。应力集中会导致微裂纹萌生并在裂纹尖端附近产生微孔洞,使其与主裂纹贯通直至失效,而位错塞积则是造成应力集中的主要原因。
        The work aims to investigate the effects of micro-defects on deformation behavior and failure mechanism of high temperature coating B_2-NiAl under uniaxial tensile load. In consideration of micro-defects like cracks, voids, etc., EAM and molecular dynamics were used to simulate the failure process of B_2-NiAl coating without defects(sample 1), B_2-NiAl coating with central symmetric micro-crack(sample 2), B_2-NiAl coating with central micro-crack and single void(sample 3) and B_2-NiAl coating with central micro-crack and double voids(sample 4). The common neighbor analysis(CNA), centrosymmetric parameter method(CSP) and radial distribution function(RDF) were used to analyze and characterize the failure process and mechanism of B_2-NiAl. With the increase of micro-defects, the yield stress, Young's modulus and yield strain decreased, while the second yielding phenomena appeared due to the existence of micro voids in the tension process. The dislocation and phase transformation area of B_2-NiAl high temperature coating without defects became smaller after the yielding, but were distributed evenly. The crack would extend along the(100) direction first and then the(111) direction until failure. Compared with the perfect B_2-NiAl high temperature coating, the dislocation and phase transformation area of B_2-NiAl coating with micro cracks and voids became smaller after the yielding and were mainly distributed along the sliding direction of crack tip <111>. The crack only extended along the [100] until failure. In addition, micro crack can decrease the strength of B_2-NiAl, but micro void can improve the plasticity. Stress concentration caused by dislocation stack can lead to micro cracks and micro voids near the crack tip to connect the main crack until the failure.
引文
[1]MAI Q X,DANIELS R D,HARPALANI H B.Structural changes induced by heating in electroless nickel-phosphorus alloys[J].Thin solid films,1988,l66(1-2):235-247.
    [2]吴锦杨.自愈合热障涂层的制备和研究[D].武汉:华中科技大学,2012.WU Jin-yang.Preparation and study of self-healing thermal barrier coatings[D].Wuhan:Huazhong University of Science and Technology,2012.
    [3]吴波.Ni Al薄膜沉积及其退火热处理的分子动力学模拟[M].南京:南京工业大学,2016.WU Bo.Molecular dynamics simulation of Ni Al film deposition and annealing heat treatment[M].Nanjing:Nanjing Tech University,2016.
    [4]YANG S L,WANG F H,SUN Z M,et al.Influence of columnar microstructure of a sputtered NiAl coating on its oxidation behavior at 1000℃[J].Intermetallics,2002,10:467-471.
    [5]ZHANG H,PENG X,WANG F.Fabrication of an oxidation-resistantβ-NiAl coating onγ-TiAl[J].Surface&coatings technology,2012,206:2454-2458.
    [6]SAEEDI B,SABOUR R A A,GHOLAMI G H.A study on nanostructured in-situ oxide dispersed NiAl coating and its high temperature oxidation behavior[J].Surface&coatings technology,2015,276:704-713.
    [7]王楠,周勇.超音速电弧喷涂Ni Al复合涂层的电化学行为研究[J].表面技术,2017,46(2):184-188.WANG Nan,ZHOU Yong.Electrochemical behavior of Ni Al composite coating by supersonic arc spraying[J].Surface technology,2017,46(2):184-188.
    [8]BAI M,REDDY L,HUSSAIN T.Experimental and thermodynamic investigations on the chlorine-induced corrosion of HVOF thermal sprayed NiAl coatings and304 stainless steels at 700?℃[J].Corrosion science,2018,135:147-157.
    [9]李铁藩,马信清.Y2O3质点对β-Ni Al涂层抗氧化性能的影响[J].中国稀土学报,1991,9(3):229-233.LI Tie-fan,MA Xin-qing.Influnce of Y2O3 doping onβ-NiAl coating in inoxidizability[J].Journal of rare earths,1991,9(3):229-233.
    [10]李惠,焦雷,陆鹏程,等.CuCo2Be合金表面等离子喷涂Cr3C2-Ni Cr/Ni Al复合涂层不同温度下的摩擦磨损特性[J].稀有金属材料与工程,2018,47(2):588-593.LI Hui,JIAO Lei,LU Peng-cheng,et al.Friction and wear properties of plasma sprayed Cr3C2-Ni Cr/Ni Al composite coating on Cu Co2Be alloy at different temperatures[J].Rare metal materials and engineering,2018,47(2):588-593.
    [11]TAWANCY H M.Infuence of superalloy substrate composition on the oxidation resistance ofβ-NiAl diffusion coating[J].Metallography,microstructure,and analysis,2018,7(1):65-76.
    [12]朱志雄,张鸿,刘超峰,等.Ni-Al合金凝固过程的分子动力学模拟[J].中国有色金属学报,2009,19(8):1409-1416.ZHU Zhi-xiong,ZHANG Hong,LIU Chao-feng,et al.Molecular dynamics simulation for solidification process of Ni-Al alloys[J].The Chinese journal of nonferrous metals,2009,19(8):1409-1416.
    [13]沙宪伟,张修睦,陈魁英,等.Ni Al表面能的分子动力学计算[J].金属学报,1996,32(11):1184-1188.SHA Xian-wei,ZHANG Xiu-mu,CHEN Kui-ying,et al.Surface energy of NiAl alloy calculated by molecular dynamics simulation[J].Acta metallurgica sinica,1996,32(11):1184-1188.
    [14]沙宪伟,张修睦,陈魁英,等.Ni Al热诱发马氏体相变的分子动力学模拟[J].金属学报,1996,32(7):685-694.SHA Xian-wei,ZHANG Xiu-mu,CHEN Kui-ying,et al.Molecular dynamics simulation of thermally induced martensitic transformations in NiAl[J].Acta metallurgica sinica,1996,32(7):685-694.
    [15]GUO Ya-fang,WANG Yue-sheng,WU Wen-ping,et al.Atomistic simulation of martensitic phase transformation at the crack tip in B2NiAl[J].Acta materialia,2007,55:3891-3897.
    [16]EVTEEV A V,LEVCHENKO E V,RILEY D P,et al.Reaction of a Ni-coated Al-nanoparticle to form B2Ni Al:A molecular dynamics study[J].Philosophical magazine letters,2009,89(12):815-830.
    [17]BARAS F,POLITANO O.Epitaxial growth of the intermetallic compound NiAl on low-index Ni surfaces in Ni/Al reactive multilayer nanofoils[J].Acta materialia,2018,148:133-146.
    [18]CUI Yuan-yuan,CHEN Hong-fei,YANG Guang,et al.Molecular dynamics simulations of lattice site preference and phase separation in B2NiAl with Pt addition[J].Journal of alloys and compounds,2018,740:863-869.
    [19]MAUREL V,RéMY L,HARVEY M,et al.The respective roles of thermally grown oxide roughness and NiAl coating anisotropy in oxide spallation[J].Surface&coatings technology,2013,215:52-61.
    [20]DING J,LI F X,KANG K J.Effects of material creep on displacement instability in a surface groove under thermo-mechanical cycling[J].Surface&coatings technology,2009,204(1-2):157-164.
    [21]MISHIN Y,MEHL M J,PAPACONSTANTOPOULOSD A.Embedded-atom potential for B2Ni Al[J].Physical review B,2002,65:224114.
    [22]张而耕,陈强,黄彪,等.热障涂层材料制备及失效机理的研究进展[J].陶瓷学报,2016,37(1):5-10.ZHANG Er-geng,CHEN Qiang,HUANG Biao,et al.Research progress and performance of thermal barrier coatings[J].Journal of ceramics,2016,37(1):5-10.
    [23]WU W P,YAO Z Z.Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel[J].Theoretical&applied fracture mechanics,2012,62(1):67-75.
    [24]罗德春,芮执元,曹卉,等.单晶γ-Ti Al中孔洞位置对裂纹扩展影响的分子动力学模拟[J].功能材料,2016,47(6):136-141.LUO De-chun,RUI Zhi-yuan,CAO Hui,et al.Effect of holes position on single crystalγ-TiAl alloy crack propagation based on molecular dynamics simulation[J].Functional materials,2016,47(6):136-141.
    [25]吉伯海,袁周致远,刘天笳,等.钢箱梁疲劳裂纹钻孔止裂修复的影响因素[J].江苏大学学报(自然科学版),2016,37(1):97-102.JI Bo-hai,YUAN Zhou-zhi-yuan,LIU Tian-jia,et al.Influencing factors of stop-hole method for fatigue crack of steel box girder[J].Journal of Jiangsu University(natural science edition),2016,37(1):97-102.
    [26]PUN G P P,MISHIN Y.Development of an interatomic potential for the Ni-Al system[J].Philosophical magazine,2009,89(34-36):3245-3267.
    [27]SUNDARAM D S,PURI P,YANG V.Thermochemical behavior of nickel-coated nanoaluminum particles[J].Journal of physical chemistry C,2013,117:7858-7869.
    [28]赵亚溥.纳米与介观力学[M].北京:科学出版社,2014.ZHAO Ya-pu.Nano and mesoscopic mechanics[M].Beijing:Science Press,2014.
    [29]SWOPE W C,ANDERSEN H C,BERENS P H,et al.Acomputer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters[J].The journal of chemical physics,1982,76(1):637-649.
    [30]NOSE S.A unified formulation of the constant temperature molecular dynamics methods[J].The journal of chemical physics,1984,81(1):511.
    [31]DING Jun,WANG Lu-sheng,SONG Kun,et al.Molecular dynamics simulation of crack propagation in singlecrystal aluminum plate with central cracks[J].Journal of nanomaterials,2017,2017:1-12.
    [32]丁军,刘泊,王路生,等.微观尺度下单晶铜熔点多因素影响的分子动力学模拟研究[J].材料导报,2017,31(6):147-152.DING Jun,LIU Bo,WANG Lu-sheng,et al.Microscale molecular dynamics simulation of different factors influence on melting point of single crystal copper[J].Materials review,2017,31(6):147-152.
    [33]STUKOWSKI A.Visualization and analysis of atomistic simulation data with ovito:The open visualization tool[J].Modelling and simulation in materials science and engineering,2010,18(6):2154-2162.
    [34]郭宇,庄茁,李晓雁.FCC金属塑性屈服的尺度效应和应变率响应[J].力学学报,2006,38(3):398-406.GUO Yu,ZUANG Zhuo,LI Xiao-yan.Effects of specimen size and applied strain rate on the plastic flow of FCC metals[J].Chinese journal of theoretical and applied mechanics,2006,38(3):398-406.
    [35]HEALY C J,ACKLAND G J.Molecular dynamics simulations of compression-tension asymmetry in plasticity of Fe nanopillars[J].Acta materialia,2014,70(5):105-112.
    [36]曹莉霞,尚家香,张跃.应力诱发Ni Al单晶马氏体相变的分子动力学模拟[J].物理学报,2009,58(10):7307-7312.CAO Li-xia,SHANG Jia-xiang,ZHANG Yue.Molecular dynamics simulation of stress-induced martensitic phase transformation in Ni Al[J].Acta physica sinica,2009,58(10):7307-7312.
    [37]赖莉珊,吴永全,沈通,等.纳米Al2O3颗粒对纯Fe液诱导凝固过程的分子动力学模拟[J].物理化学学报,2012,28(6):1347-1354.LAI Li-shan,WU Yong-quan,SHEN Tong,et al.Molecular dynamics simulation of induced solidification process of pure liquid Fe by Al2O3 nanoparticles[J].Acta physico-chimica sinica,2012,28(6):1347-1354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700