癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material
  • 作者:周孙希 ; 章学来 ; 刘升 ; 陈启杨 ; 徐笑锋 ; 王迎辉
  • 英文作者:ZHOU Sunxi;ZHANG Xuelai;LIU Sheng;CHEN Qiyang;XU Xiaofeng;WANG Yinghui;Cool Storage Technology Institute, Shanghai Maritime University;Vegetable Research Center,Beijing Academy of Agriculture and Forestry Sciences;
  • 关键词:复合材料 ; 相变 ; 热传导 ; 吸附 ; 稳定性
  • 英文关键词:composites;;phase change;;heat conduction;;adsorption;;stability
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:上海海事大学蓄冷技术研究所;北京市农林科学院蔬菜研究中心;
  • 出版日期:2018-10-13 10:04
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家重点研发课题(2018YFD0401305);; 国家自然科学基金项目(51376115);; 上海市科委项目(16040501600)
  • 语种:中文;
  • 页:HGSZ201901033
  • 页数:8
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:300-307
摘要
为了寻求温度段在2~3℃的低温相变材料,采用低共熔法,以理论计算为基础制备了癸醇-棕榈酸(DA-PA)二元复合相变材料。为提高其热导率,利用膨胀石墨(EG)的多孔特性,制备了最佳质量比为15∶1的DA-PA/EG复合相变材料。通过DSC、步冷曲线、红外光谱测试、SEM、Hot Disk热常数分析、高低温循环实验对复合相变材料的结构和性能进行了研究。实验结果表明,当DA-PA质量比为97.8∶2.2时的低共熔温度为2.9℃,相变潜热为203.6 J·g-1。真空吸附后DA-PA被均匀地包裹在EG的多孔网状结构中,DA-PA/EG的相变温度为2.7℃,相变潜热为193.9 J·g-1,热导率为1.416 W·(m·K)-1,相比DA-PA提高了4.3倍。经过100次高低温循环后,DA-PA/EG仍保持良好的稳定性,在冷链物流中有较大的应用价值。
        To find a low temperature phase change material with a temperature range of 2—3℃, a sterol-palmiticacid(DA-PA) binary composite phase change material was prepared by eutectic method based on theoretical calculation. To improve the thermal conductivity, the DA-PA/EG composite phase change material with the optimalmass ratio of 15:1 was obtained by using the porous characteristics of expanded graphite(EG). The structure andproperties of the composite phase change material were studied by DSC, step cooling curve, FI-TR, SEM and high-low temperature cycle test. The results show that when the mass ratio of DA-PA was 97.8:2.2, the phase changetemperature was 2.9℃ and the latent heat was 203.6 J · g~(-1). After vacuum adsorption, DA-PA was uniformlyencapsulated in the porous network structure of EG. The phase change temperature of DA-PA/EG was 2.7℃, thelatent heat was 193.9 J·g~(-1), and the thermal conductivity was 1.416W·(m·K)-1, which was 4.3 times higher thanDA-PA. After 100 times of high-low temperature cycles, the thermal properties of DA-PA/EG did not change muchand still maintained good stability. The results show that the DA-PA/EG composite phase change material has great application value in the cold chain logistics.
引文
[1]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009:2.Zhang R Y. Phase Change Materials and Phase Change Energy Storage Technology[M].Beijing:Science Press, 2009:2.
    [2] Hasan M I, Bashir H O, Shadhan A O. Experimental investigation of phase change materials for insulation of residential buildings[J].Sustainable Cities&Society, 2018, 36(10):42-58.
    [3] Laaouatni A, Martaj N, Bennacer R, et al. Phase change materials for improving the building thermal inertia[J]. Energy Procedia,2017, 139(11):744-749.
    [4] Ahmed A, Siddique A K, Ludwig N, et al. Design and optimization of a hybrid air conditioning system with thermal energy storage using phase change composite[J]. Energy Conversion and Management, 2018, 169(5):404-418.
    [5]唐恒博,武卫东,苗朋柯,等.空调用二元有机相变蓄冷材料的理论预测与研究[J].化工新型材料, 2016, 44(3):121-123.Tang H B, Wu W D, Miao P K, et al. Theoretical prediction and research of binary organic phase change cold storage materials for air conditioning[J]. New Chemical Materials, 2016, 44(3):121-123.
    [6] Kazem B, Mahdi K, Seyed A K, et al. The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material[J]. Solar Energy, 2018,169(5):411-423.
    [7] Su D, Jia Y, Lin Y, et al. Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials[J]. Energy&Buildings, 2017, 153(8):382-391.
    [8]章学来,陈裕丰,曾涛,等.医药冷链物流用相变材料的研制[J].制冷与空调, 2017, 17(7):43-46.Zhang X L, Chen Y F, Zeng T, et al. Development of phase change materials for pharmaceutical cold chain logistics[J]. Refrigeration and Air-conditioning, 2017, 17(7):43-46.
    [9] Melone L, Altomare L, Cigada A, et al. Phase change material cellulosic composites for the cold storage of perishable products:from material preparation to computational evaluation[J]. Applied Energy, 2012, 89(1):339-346.
    [10]谭爱龄,陈璐,柳建良.高吸水性树脂复合相变材料的冻融特性[J].化工进展, 2011, 30(10):2262-2265.Tan A L, Chen L, Liu J L. Freeze-thaw characteristics of superabsorbent resin composite phase change materials[J].Chemical Industry and Engineering Progress, 2011, 30(10):2262-2265.
    [11]陈爱英,汪学英,曹学增.相变储能材料的研究进展与应用[J].材料导报, 2003, 17(5):42-44.Chen A Y, Wang X Y, Cao X Z. Research progress and application of phase change materials for energy storage[J].Material Review, 2003, 17(5):42-44.
    [12]曾翠华,张仁元.无机水合盐相变储热材料的过冷性研究[J].能源研究与信息, 2005, 21(1):44-49.Zeng C H, Zhang R Y. Study on subcooling property of inorganic hydrated salt phase change thermal storage materials[J]. Energy Research and Information, 2005, 21(1):44-49.
    [13]张奕,张小松.有机相变材料储能的研究和进展[J].太阳能学报, 2006, 27(7):725-730.Zhang Y, Zhang X S. Research and development of organic phase change material energy storage[J]. Chinese Journal of Solar Energy, 2006, 27(7):725-730.
    [14]张爱军,孙志高,蔡伟,等.二元有机复合相变材料性能实验研究[J].化工新型材料, 2016, 44(7):127-129.Zhang A J, Sun Z G, Cai W, et al. Experimental study on the properties of binary organic composite phase change materials[J].New Chemical Materials, 2016, 44(7):127-129.
    [15]蔡伟,孙志高,马鸿凯,等.月桂酸-十四醇二元复合相变材料的相变特性[J].太阳能学报, 2017, 38(9):2493-2497.Cai W, Sun Z G, Ma H K, et al. Phase transition properties of lauric acid-tetradecanol binary composite phase change materials[J]. Journal of Solar Energy, 2017, 38(9):2493-2497.
    [16]袁艳平,白力,牛犇.脂肪酸二元低共熔混合物相变温度和潜热的理论预测[J].材料导报, 2010, 24(2):111-113.Yuan Y P, Bai L, Niu B. Theoretical prediction of phase transition temperature and latent heat of fatty acid binary eutectic mixtures[J]. Material Review, 2010, 24(2):111-113.
    [17] Li M, Kao H, Wu Z, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5):1606-1612.
    [18] Zuo J, Li W, Weng L. Thermal performance of caprylic acid/1-dodecanol eutectic mixture as phase change material(PCM)[J].Energy&Buildings, 2011, 43(1):207-210.
    [19]郭勇,朱阳倩,伍乾,等.癸酸-肉豆蔻酸相变储热微胶囊的制备与表征[J].新型建筑材料, 2017, 44(10):104-107.Guo Y, Zhu Y Q, Wu Q, et al. Preparation and characterization of decanoic acid-myristic acid phase change thermal storage microcapsules[J]. Novel Building Materials, 2017, 44(10):104-107.
    [20] Guo J, Xiang H X, Wang Q Q, et al. Preparation and properties of polyacrylonitrile fiber/binary of fatty acids composites as phase change materials[J]. Energy Sources, 2013, 35(11):1064-1072.
    [21]李玉洋,章学来,徐笑锋,等.正辛酸-肉豆蔻酸低温相变材料的制备和循环性能[J].化工进展, 2018, 37(2):689-693.Li Y Y, Zhang X L, Xu X F, et al. Preparation and cycling performance of n-octanoic acid-myristic acid low temperature phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(2):689-693.
    [22]黄艳,章学来.十二醇-癸酸-纳米粒子复合相变材料传热性能[J].化工学报, 2016, 67(6):2271-2276.Huang Y, Zhang X L. Heat transfer performance of dodecyl alcohol-capric acid-nanoparticle composite phase change material[J]. Acta Chimica Sinica, 2016, 67(6):2271-2276.
    [23]刘臣臻.相变微胶囊储能过程传热与流动特性研究[D].北京:中国矿业大学, 2017.Liu C Z. Study on heat transfer and flow characteristics of phase change microcapsule energy storage process[D]. Beijing:China University of Mining and Technology, 2017.
    [24]孙凯,张步宁,晏凤梅,等.石蜡微胶囊型相变储能材料制备及表征[J].化工进展, 2011, 30(12):2676-2678.Sun K, Zhang B N, Yan F M, et al. Preparation and characterization of paraffin microcapsule phase change energy storage materials[J]. Chemical Industry and Engineering Progress,2011, 30(12):2676-2678.
    [25]赵长颖,潘智豪,王倩,等.多孔介质的相变和热化学储热性能[J].科学通报, 2016, 61(17):1897-1915.Zhao C Y, Pan Z H, Wang Q, et al. Phase transition and thermochemical heat storage properties of porous media[J].Chinese Science Bulletin, 2016, 61(17):1897-1915.
    [26]胡小冬,高学农,李得伦,等.石蜡/膨胀石墨定形相变材料的性能[J].化工学报, 2013, 64(10):3831-3837.Hu X D, Gao X N, Li D L, et al. Properties of paraffin/expanded graphite shaped phase change materials[J]. CIESC Journal, 2013,64(10):3831-3837.
    [27]李云涛,晏华,汪宏涛,等.正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J].材料导报,2017, 31(2):94-99.Li Y T, Yan H, Wang H T, et al. Preparation and characterization of ternary eutectic system/expanded graphite composite phase change materials with n-decanoic acid-lauric acid-stearic acid[J].Materials Review, 2017, 31(2):94-99.
    [28] Yang Y, Pang Y, Liu Y, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving[J]. Materials Letters, 2018, 216(1):200-223.
    [29]翟天尧,李廷贤,仵斯,等.高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J].科学通报, 2018, 63(7):674-683.Zhai T Y, Li T X, Wu S, et al. Preparation and storage/exothermic characteristics of high thermal conductivity expanded graphite/stear stearic phase change energy storage composites[J]. Science Bulletin, 2018, 63(7):674-683.
    [30]张寅平,苏跃红.(准)共晶系相变材料融点及融解热的理论预测[J].中国科学技术大学学报, 1995, 25(4):474-478.Zhang Y P, Su Y H. Theoretical prediction of melting point and melting heat of eutectic phase change materials[J]. Journal of University of Science and Technology of China, 1995, 25(4):474-478.
    [31]张玉辉,刘海波,赵丰东.探讨用差示扫描量热法(DSC)测量相变材料相变温度和相变焓[J].中国建材科技, 2006, 15(4):35-37.Zhang Y H, Liu H B, Zhao F D. Discussion on differential scanning calorimetry(DSC)to measure phase change temperature and phase change of phase change materials[J]. China Building Materials Science and Technology, 2006, 15(4):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700