响应面法优化甘薯废水混凝沉淀工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of response surface methodologyin optimizing flocculation-coagulation process of sweet potato wastewater
  • 作者:陈善敏 ; 张静 ; 蒋和体
  • 英文作者:CHEN Shanmin;ZHANG Jing;JIANG Heti;College of Food Science Southwest University;
  • 关键词:甘薯废水 ; 混凝沉淀 ; 响应面法(response ; surface ; methodology ; RSM) ; 臭氧氧化
  • 英文关键词:sweet potato wastewater;;coagulation-flocculation;;response surface methodology(RSM);;ozone oxidation
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:西南大学食品科学学院;
  • 出版日期:2018-10-31 16:03
  • 出版单位:食品与发酵工业
  • 年:2019
  • 期:v.45;No.378
  • 基金:重庆市科委基金(cstc2015shms-ztzx80013)
  • 语种:中文;
  • 页:SPFX201906027
  • 页数:7
  • CN:06
  • ISSN:11-1802/TS
  • 分类号:169-175
摘要
采用响应面法(response surface methodology,RSM)对甘薯废水混凝沉淀工艺进行优化。以化学需氧量(chemical oxygen demand,COD)去除率为响应值,分别考察混凝剂添加量、助凝剂添加量和废水p H值对处理效果的影响。结果表明,甘薯废水最佳混凝沉淀条件为聚合氯化铝(poly-aluminum chloride,PAC)添加量0. 92 m L、聚丙烯酰胺(poly-acrylamide,PAM)添加量0. 32 m L、p H值7. 0,在此条件下COD去除率为47. 95%,与预测值基本一致。在此基础上采用混凝-臭氧氧化联合法对废水进行处理,臭氧通气时间5 min,通气量0. 156 mg(臭氧)/mg(COD),混凝条件最优,该处理工艺下,COD去除率、悬浮物(suspended substance,SS)去除率和浊度去除率分别为90. 54%、93. 81%和90. 21%,p H值为7. 83。
        Response surface methodology was used to optimize the flocculation-coagulation process for sweet potato wastewater. With the removal rate of chemical oxygen demand( COD) as response,effects of coagulant dosage,assistant dosage,and pH of waste water on the treatment were assessed. The results indicated that the optimal conditions for the flocculation-coagulation process were as follows: 0. 92 m L poly-aluminum phloride,0. 32 m L poly-acrylamide,and at pH = 7. Under this condition,the COD removal rate was 47. 95%,which agreed well with the model prediction value. Based on this optimal condition,a flocculation-coagulation-ozone oxidation process was used to treat sweet potato wastewater. The results showed that when ozone was ventilated for 5 min at 0. 156 mg( O3)/mg(COD),the removal rates of COD,suspended substance,and turbidity were 90. 54%,93. 81%,and 90. 21%,respectively,and the pH value was 7. 83. This process can provide some theoretical guidance for treating sweet potato starch wastewater.
引文
[1] ISHIDA H,SUZUNO H,SUGIYAMA N,et al. Nutritive evaluation on chemical components of leaves,stalks and stems of sweet potatoes(Ipomoea batatas Poir)[J]. Food Chemistry,2000,68(3):359-367.
    [2] CHENG Shi,ZHANG Yi-feng,ZENG Zhao-qin,et al.Screening,separating,and completely recovering polyphenol oxidases and other biochemicals from sweet potato wastewater in starch production[J]. Applied Microbiology&Biotechnology,2015,99(4):1 745.
    [3]刘凌,崔明学,吴娜,等.马铃薯淀粉工业废水的环境影响与资源化利用[J].食品与发酵工业,2011,37(8):131-135.
    [4] DUAN J,GREGORY J. Coagulation by hydrolyzingmetal salts[J]. Advances in Colloid&Interface Science,2003,100:475-502.
    [5] GARIMA J,SHANTA S,NAWGHARE P,et al. Treatment of pharmaceutical wastewater(herbal)by a coagulation/flocculation process[J]. International Journal of Environmental Studies,2001,58(3):313-330.
    [6] MELS A R,RULKENS W H,AK V D M,et al. Flotation with polyelectrolytes as a first step of a more sustainable wastewater treatment system[J]. Water Science&Technology A Journal of the International Association on Water Pollution Research,2000,43(11):83-90.
    [7]谭啸.絮凝剂对马铃薯淀粉生产废水中COD去除的研究[D].哈尔滨:哈尔滨工业大学,2011.
    [8]岑超平.木薯淀粉废水的絮凝法处理[J].上海环境科学,2001(1):31-32.
    [9]许昭和,卓鉴波,张晓丽,等.利用FNF絮凝法处理玉米淀粉废水回收蛋白粉[J].食品科学,1990,11(6):19-21.
    [10]王乾.甘薯淀粉废水处理工艺研究及设计[D].青岛:中国海洋大学,2011.
    [11] TIAN Xia. Study on environmental materials with treatment of sweet potato starch wastewater by coagulation precipitation method[J]. Advanced Materials Research,2013,703(703):33-36.
    [12]李坚斌,刘慧霞,扈胜禄,等.臭氧对糖蜜酒精废液脱色效果的研究[J].食品与发酵工业,2003,29(8):61-64.
    [13]王娟,范迪.臭氧氧化法深度处理造纸废水试验研究[J].工业水处理,2009,29(1):33-36.
    [14]刘亚奇,王俊峰,钟常明,等.混凝沉淀-臭氧联合处理某工业园区废水试验研究[J].能源环境保护,2017(6):11-15.
    [15]邓福明.酸浆法与旋流分离法制备甘薯淀粉的物化特性及粉条品质比较研究[D].北京:中国农业科学院,2012.
    [16]国家标准化管理委员会. GB 28232—2011臭氧发生器安全与卫生标准[S].北京:中国标准出版社,2011.
    [17]中国环境监测总站. HJ 828—2017水质化学需氧量的测定[S].北京:中国标准出版社,2017.
    [18]国家环境保护局. GB/T 11901—1989《悬浮物的测定》[S].北京:中国标准出版社,1989.
    [19]北京市环境保护监测中心. GB/T 12300—1991水质浊度的测定[S].北京:中国标准出版社,1991.
    [20]薛林科.马铃薯淀粉废水处理的实验研究[D].甘肃:西北师范大学,2010.
    [21]谢安.变性淀粉混凝剂的制备及在马铃薯淀粉废水处理中的应用研究[D].北京:中国农业机械化科学研究院,2010.
    [22]赵阳丽,赵霞,姜峰,等.不同混凝剂对马铃薯淀粉废水混凝效果的影响[J].应用化工,2011,40(5):782-785.
    [23]王有乐,张宝茸,范志明.化学混凝剂预处理马铃薯淀粉废水的比较研究[J].环境科学与技术,2010,33(2):165-169.
    [24] LI Jianshu,MODAK P R,XIAO Huining. Novel flocculation system based on 21-arm cationic star polymer[J].Colloids&Surfaces A Physicochemical&Engineering Aspects,2006,289(1):172-178.
    [25] LI Quanhong. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein[J]. Food Chemistry,2005,92(4):701-706.
    [26] MURALIDHAR R V,CHIRUMAMILA R R. A response surface approach for the comparison of lipase production by Canida cylindracea using two different carbon sources[J].Biochemical Engineering Journal,2001,9(1):17-23.
    [27] GHAFARI S,AZIZ H A,ISA M H,et al. Application of response surface methodology(RSM)to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride(PAC)and alum[J]. Journal of Hazardous Materials,2009,163(2-3):650.
    [28] HOLLENDER J,ZIMMERMANN S G,KOPEPKE S,et al. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale postozonation followed by sand filtration[J]. Environmental Science&Technology,2009,43(20):7 862-7 869.
    [29] BAILEY P S. The reactions of ozone with organic compounds[J]. Journal of Hygiene,1958,30(4):433-467.
    [30] OH B S,PARK S J,JUNG Y J,et al. Disinfection and oxidation of sewage effluent water using ozone and UV technologies[J]. Water Science&Technology,2007,55(1-2):299-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700