Ce掺杂ZnO的晶体结构、发光和光催化性能的不同机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Different mechanisms of crystal structure, luminescent property and photocatalytic activity of Ce doped ZnO
  • 作者:王古平 ; 彭萍萍 ; 赵森 ; 俞鼎行
  • 英文作者:WANG Gu-ping;PENG Ping-ping;ZHAO Sen;YU Ding-hang;School of Pharmaceutical and Material Engineering, Taizhou University;
  • 关键词:铈掺杂 ; 氧化锌 ; 光致发光 ; 光催化
  • 英文关键词:Ce-doping;;zinc oxide;;photoluminescence;;photocatalysis
  • 中文刊名:HXGC
  • 英文刊名:Chemical Engineer
  • 机构:台州学院医药与化工学院;
  • 出版日期:2019-04-25
  • 出版单位:化学工程师
  • 年:2019
  • 期:v.33;No.283
  • 基金:浙江省大学生科技创新活动计划暨新苗人才计划资助项目(2018R436007);; 浙江省公益性技术应用研究资助项目(2014C37085);; 校开放实验资助项目
  • 语种:中文;
  • 页:HXGC201904006
  • 页数:6
  • CN:04
  • ISSN:23-1171/TQ
  • 分类号:17-21+30
摘要
采用溶胶凝胶法合成了一系列Ce掺杂ZnO粉晶。采用XRD, UV-VIS, FT-IR, PL技术及以亚甲基蓝溶液脱色反应为模型,研究了Ce掺杂ZnO晶体结构、光学带隙、成键、光致发光及光催化性能产生的不同机理。结果表明:低含量Ce掺杂和高含量Ce掺杂对ZnO结构和性能产生的机理存在差异。低含量Ce掺杂时,ZnO晶格参数及Zn-O键长因原子半径大的Ce~(3+)替代原子半径小的Zn~(2+)而增加,光学带隙因Burstein-Moss效应而宽化,结晶性能因ZnO成核空间增加而提高,青蓝色发光峰因结晶性能提高而减弱。高含量Ce掺杂时,ZnO晶格参数及Zn-O键长因Ce~(3+)Ce~(4+)转化而减小,光学带隙因Ce~(3+)占据Zn~(2+)格位而减小,结晶性能因氧化铈包覆作用并降低结晶速率而提高,青蓝色发光峰随缺陷增加而增强。Ce掺杂ZnO光催化能力随光学带隙减小而提高。光催化性能最优Ce掺杂量为2%。FT-IR表明系列Ce掺杂ZnO均含有Zn-O和Ce-O-Zn等成键。
        A series of Ce doped ZnO powders were synthesized by sol-gel method. The crystal structure, optical band gap, bonding, photoluminescence and photocatalytic properties of Ce-doped ZnO were studied by XRD, UVVIS, FT-IR, PL technology and based on the decolorization reaction of methylene blue solution. The results show that the mechanism of low and high Ce doping on the structure and properties of ZnO is different. When Ce content is low, the lattice parameters and bond length of ZnO increase because Ce~(3+)with larger atomic radius replaces Zn~(2+) with smaller atomic radius. The optical band gap is broadened because of Burstein-Moss effect. The crystallinity is improved because of the increase of nucleation space of ZnO, and the blue emission peak is weakened because of the improvement of crystallinity. When Ce content is high, the lattice parameters of ZnO and the bond length of ZnO decrease due to the conversion of Ce~(3+)Ce~(4+), the optical band gap decreases because Ce~(3+)occupies the lattice position of Zn~(2+), the crystallinity increases due to the encapsulation of CeO_2 and the reduction of crystallization rate,and the blue emission peak increases with the increase of defects. The photocatal ytic activity of Ce-doped ZnO increases with the decrease of optical bandgap. And the optimum Ce doping content for photocatalytic performance is2%. At the same time, FT-IR showed that all Ce-doped ZnO contained Zn-O and Ce-O-Zn bonds.
引文
[1]王古平,付亚波,李志刚,等.反置结构Zn O微米级圆晶的制备和性能研究[J].材料导报,2014,28(10):80-83.
    [2]吴莉莉,吴佑实,邹科,等.La、Ce掺杂Zn O纳米晶的发光特性[J].发光学报,2008,29(3):523-526.
    [3]M R Khanlary,A Hajinodozi,S Baghshahi.Influence of Ce doping concentration on the structural and optical proerties of sol-gel derived Zn O:Ce[J].J.Inorg Oranomet Polym,2015,25:1521-1528.
    [4]Hadi F M,Mitra H,Sirous K,et al.The effects of non-thermal plasma on the morphology of Ce-doped ZnO:Synthesis,characterization and photocatalytic activity of hierarchical[J].Plasma Chem Plasma Process,2017,37:159-176.
    [5]Lee Y H,Kim D H,Kim T W.Efficiency enhancement of inverted organic photovoltaic cells due to an embedded Ce-doped ZnO electron transport layer[J].Journalof Sol-Gel Science Technolgy,2015,76:644-650.
    [6]Theivarasu C,Indumathi T.Effect of rare earth metal ion Ce3+on the structural,optical and magnetic properties of Zn O nanoparticles synthesized by the co-precipitation method[J].J Mater Sci:Mater Electron,2017,28:3664-3671.
    [7]Manuel G M,Richard R S,Victor C,et al.The influence of Ce doping on the structural and optoelectronic properties of RF-sputtered Zn O films[J].Opt Quant Electron,2015,47:2637-2648.
    [8]闫龙,王玉飞,韩志萍.Ce3+掺杂Ti O2-ZnO凝胶的相变过程研究[J].陶瓷学报,2010,31(3):372-377.
    [9]Li G R,Hong L,Zhao W X,et al.Controllable lectrochemical synthesis of Ce4+doped ZnO nanostructrures from nanotubes to nanorods and nanocages[J].Crystal Growth&Design.2008,8(4):1276-1281.
    [10]Du F L,Wang N Zhang D M,et al.Preparation,characterization and infrared emissivity study of Ce-doped Zn O films[J].Journal of Rare Earths,2010,28(3):391-395.
    [11]Ilican S,Caglar Y,Caglar M.Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method[J].Joural of Optoelectronics and Advanced Materials,2008,10(10):2578-2583.
    [12]Bhagyalekshmi G L,Sha A P N and Rajendaran D N.Temperature-independent photoluminescence response in Zn O:Ce nanophosphor[J].Bulletin of Materials Science,2017,40(7):1429-1434.
    [13]Cebulla R,Wendt R,Ellmer K.Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma:relationships between plasma parameters and structural and electrical film properties[J].J.Appl.Phys,1998,83:1087-1095.
    [14]Kasar C K,Bange P B,Patil D S.Effect of cerium composition on opitical and structural properties of cerium doped Zn O nanowires[J].2017,28:11217-11221.
    [15]王古平.硫酸氢盐氯吡格雷药物晶型测定[J],化学工程师,2011,193(10):28-30.
    [16]Dhakal K P,Duong D L,Lee J,et al.Confocal absorption spectral imaging of Mo S2:Optical transitions depending on the atomic thickness of intrinsic and chemically doped Mo S2[J].Nanscal,2014,6(21):13028-1302835.
    [17]Oo MD,Mccluskey MD,Lalonde A D,et al.Infrared spectroscopy of Zn O nanoparticles containing Co[Sbu2]impurities[J].Applied Physics Letters,2005,86(7):73111-73113.
    [18]Imtiaz A,Farrukh MA.Influence of CdS dopant on oxygen vacancies and Ce3+formation in Ce O2-ZnO nanocomposites:structural,optical and catalytic proper ties[J].Journal of Materials Science:Materials in Electronics,2017,28:2788-2794.
    [19]Kumaran S M,Gopalakrishnan R.Structural,optical and photoluminescence properties of Zn1-xCexO(x=0,0.05,0.1)nanopaticles by sol-gel method annealded under Ar atmosphere[J].Journal of Sol-Gel Science and Technology,2012,62(2):193-200.
    [20]Theivarasu C,Indumathi T.Effect of rare earth metal ion Ce3+pm the structural,optical and magnetic properties of ZnO nanoparticles synthesized by the co-precipitation method[J].Journal of Materials Science:Materials in Electronics,2017,28(4):3664-3671.
    [21]Readdy A J,Kokila M K,Nagabhushan H,et al.Combustion syntheis,characterization and raman studies of Zn O nanopowders[J].Spectrochimica acta Part A,Molecular and Biomolecular Spectroscopy,2011,81(1):5349-5355.
    [22]潘荣飞,郑兴芳.稀土Ce掺杂ZnO光催化剂的制备及研究[J].广州化工,2017,44(345):35-37.
    [23]Majid A,Ali A.Red shift of near band edge emission in cerium implanted Ga N[J].Journal of Physics D:Applied Physics,2009,42(4):045411-045414.
    [24]李丽,杨合情,余杰,等.氧化锌微球和层状集聚体的控制合成及其光致发光[J].化学学报,2008,66(3):335-342.
    [25]Sharma P K,Kumar M,Pandey A C.Green luminescent ZnO:Cu2+nanopaticles for their applications in white-light generation from UV LEDs.[J].Journal of Nanoparticle Research,2011,13:1629-1637.
    [26]于翔鹏,傅佳佳,王洪博.碱沉淀法制备Ce掺杂ZnO及其光催化性能[J].材料科学与工程,2015,33(4):591-594.
    [27]简绍菊,左甜,杨为森,等.Ce掺杂Zn O复合中空材料的制备及光催化性能[J].化工新型材料,2017,45(3):58-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700