CO_2-水-岩作用对致密砂岩性质与裂缝扩展的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation on the Influence of CO_2-Brine-Rock Interaction on Tight Sandstone Properties and Fracture Propagation
  • 作者:李四海 ; 马新仿 ; 张士诚 ; 邹雨时 ; 李宁 ; 张兆鹏 ; 曹桐
  • 英文作者:LI Sihai;MA Xinfang;ZHANG Shicheng;ZOU Yushi;LI Ning;ZHANG Zhaopeng;CAO Tong;School of Petroleum Engineering, China University of Petroleum;
  • 关键词:鄂尔多斯盆地 ; 延长组 ; 长7致密砂岩 ; CO_2-水-岩作用 ; 岩石性质 ; CO_2压裂 ; 裂缝扩展
  • 英文关键词:Ordos basin;;Yanchang formation;;Chang-7 tight sandstone;;CO_2-brine-rock interaction;;rock property;;CO_2 fracturing;;fracturepropagation
  • 中文刊名:XJSD
  • 英文刊名:Xinjiang Petroleum Geology
  • 机构:中国石油大学(北京)石油工程学院;
  • 出版日期:2019-06-01
  • 出版单位:新疆石油地质
  • 年:2019
  • 期:v.40;No.198
  • 基金:国家自然科学基金(51574255,51704305);; 国家油气重大专项(2016ZX05046-004,2016ZX05049-006);; 国家973项目(2015CB250903)
  • 语种:中文;
  • 页:XJSD201903009
  • 页数:7
  • CN:03
  • ISSN:65-1107/TE
  • 分类号:64-70
摘要
基于CO_2水溶液浸泡致密砂岩实验和室内压裂模拟实验,研究了CO_2-水-岩作用对致密砂岩性质和裂缝扩展的影响,并通过CO_2水溶液浸泡试样裸眼段考察CO_2在压裂过程中的化学作用。研究结果表明:CO_2水溶液浸泡后,方解石和白云石含量显著降低,钾长石和斜长石被溶蚀生成高岭石;石英和黏土矿物含量升高,但伊利石和绿泥石含量降低;溶蚀孔隙数量增多,孔径变大,孔隙度和渗透率增大;抗张强度降低,且平行层理降低幅度大于垂直层理;相比于滑溜水压裂,超临界CO_2压裂的破裂压力降低14.98%,形成的水力裂缝数量增多,裂缝形态更复杂;CO_2水溶液浸泡裸眼段后,超临界CO_2压裂的破裂压力相比于未浸泡情况降低21.61%,且水力裂缝多点起裂,裂缝复杂程度进一步提高。实验证明CO_2的物理和化学特性能有效提高CO_2压裂裂缝的复杂性。
        Based on the experiments of static tight sandstone soaked in CO_2-saturated brine and indoor fracturing simulation, the influenceof CO_2-brine-rock interaction on tight sandstone properties and hydraulic fracture propagation were studied, and the special chemical effectof CO_2 was simulated by soaking the open-hole section of fracturing sample in CO_2-saturated brine. The study results show that after soakingin CO_2-saturated brine, the contents of calcite and dolomite in the rock sample significantly decrease, kaolinite occurs after the corrosion ofpotassium feldspar and anorthose; the contents of quartz and clay minerals increase and those of illite and chlorite decrease; the amount ofdissolved pores rises, the pore diameter, porosity and permeability become larger; the tensile strength of the tight sandstone decreases, andthe decrement extent of the tensile strength in parallel bedding is larger than that in vertical bedding; compared with slickwater fracturing,the formation fracture pressure of supercritical CO_2 fracturing reduces by 14.98% and the number of hydraulic fractures increases. After theopenhole section soaking in CO_2-saturated brine, the formation fracture pressure of supercritical CO_2 fracturing decreases by 21.61% com-pared with that of supercritical CO_2 fracturing without the soaking treatment and the fracture complexity is greatly enhanced. The experimentresult proves that the physical and chemical properties of CO_2 can effectively improve the fracture complexity during CO_2 fracturing.
引文
[1]ZOU Yushi,ZHANG Shicheng,ZHOU Tong,et al.Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J].Rock Mechanics and Rock Engineering,2016,49(1):33-45.
    [2]SINAL M L,LANCASTER G.Liquid CO2fracturing:advantages and limitations[J].Journal of Canadian Petroleum Technology,1987,26(5):26-30.
    [3]MIDDLETON R S,CAREY J W,CURRIER R P,et al.Shale gas and non-aqueous fracturing fluids:opportunities and challenges for supercritical CO2[J].Applied Energy,2015,147:500-509.
    [4]YOST II A B,GEHR J B.CO2/sand fracturing in devonian shales[R].SPE 26925,1993.
    [5]GUPTA D V S,BOBIER D M.The history and success of liquid CO2and CO2/N2fracturing system[R].SPE 40016,1998.
    [6]宋振云,苏卫东,杨延增,等.CO2干法加砂压裂技术研究与实践[J].天然气工业,2014,34(6):55-59.SONG Zhenyun,SU Weidong,YANG Yanzeng,et al.Experimental studies of CO2/sand dry-frac process[J].Natural Gas Industry,2014,34(6):55-59.
    [7]王香增,吴金桥,张军涛.陆相页岩气层的CO2压裂技术应用探讨[J].天然气工业,2014,34(1):64-67.WANG Xiangzeng,WU Jinqiao,ZHANG Juntao.Application of CO2fracturing technology for terrestrial shale gas reservoirs[J].Natural Gas Industry,2014,34(1):64-67.
    [8]刘合,王峰,张劲,等.二氧化碳干法压裂技术--应用现状与发展趋势[J].石油勘探与开发,2014,41(4):466-472.LIU He,WANG Feng,ZHANG Jin,et al.Fracturing with carbon dioxide:application status and development trend[J].Petroleum Exploration and Development,2014,41(4):466-472.
    [9]ISHIDA T,AOYAGI K,NIWA T,et al.Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J].Geophysical Research Letters,2012,39(16):L16309.
    [10]KIZAKI A,TANAKA H,OHASHI K,et al.Hydraulic fracturing in Inada granite and Ogino tuff with super critical carbon dioxide[R].Seoul,Korea:ISRM Regional Symposium-7th Asian Rock Mechanics Symposium,2012.
    [11]ZHANG Xinwei,LU Yiyu,TANG Jiren,et al.Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J].Fuel,2017,190:370-378.
    [12]WANG Lei,YAO Bowen,XIE Haojun,et al.CO2injection-induced fracturing in naturally fractured shale rocks[J].Energy,2017,139:1 094-1 110.
    [13]DENG Bozhi,YIN Guangzhi,LI Minghui,et al.Feature of fractures induced by hydrofracturing treatment using water and L-CO2as fracturing fluids in laboratory experiments[J].Fuel,2018,226:35-46.
    [14]ZOU Yushi,LI Ning,MA Xinfang,et al.Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation[J].Journal of Natural Gas Science and Engineering,2018,49:145-156.
    [15]PENG Peihuo,JU Yang,WANG Yongliang,et al.Numerical analysis of the effect of natural microcracks on the supercritical CO2fracturing crack network of shale rock based on bonded particle models[J].International Journal for Numerical&Analytical Methods in Geomechanics,2017,41(18):1 992-2 013.
    [16]ZHANG Xiangxiang,WANG J G,GAO Feng,et al.Impact of water,nitrogen and CO2fracturing fluids on fracturing initiation pressure and flow pattern in anisotropic shale reservoirs[J].Journal of Natural Gas Science and Engineering,2017,45(3):291-306.
    [17]LIU Liyuan,ZHU Wancheng,WEI Chenhui,et al.Microcrackbased geomechanical modeling of rock-gas interaction during supercritical CO2fracturing[J].Journal of Petroleum Science and Engineering,2018,164:91-102.
    [18]马瑾.地质封存条件下超临界二氧化碳运移规律研究[D].北京:清华大学,2013.MA Jin.Researches on the migration of supercritical CO2on geological storage conditions[D].Beijing:Tsinghua University,2013.
    [19]LI Sihai,ZHANG Shicheng,ZOU Yushi,et al.Experimental study on the features of hydraulic fracture created by slickwater,liquid carbon dioxide,and supercritical carbon dioxide in tight sandstone reservoirs[R].Washington,USA:52nd US Rock Mechanics/Geomechanics Symposium,2018.
    [20]DUAN Zhenhao,SUN Rui.An improved model calculating CO2solubility in pure water and aqueous Na Cl solutions from 273 to 533K and from 0 to 2000 bar[J].Chemical Geology,2003,193(3-4):257-271.
    [21]PRASHANTH M,MILIND D,JOSEPH M.Gas-compositional effects on mineralogical reactions carbon dioxide sequestration[J].SPE Journal,2011,16(4):1-10.
    [22]高玉巧,刘立,曲希玉.CO2与砂岩相互作用机理与形成的自生矿物组合[J].新疆石油地质,2007,28(5):579-584.GAO Yuqiao,LIU Li,QU Xiyu.Mechanism of CO2-sandstone interaction and formative authigenic mineral assemblage[J].Xinjiang Petroleum Geology,2007,28(5):579-584.
    [23]肖娜,李实,林梅钦,等.CO2-水-岩石相互作用对砂岩储集层润湿性影响机理[J].新疆石油地质,2017,38(4):460-465.XIAO Na,LI Shi,LIN Meiqin,et al.Influence of CO2-water-rock interactions on wettability of sandstone reservoirs[J].Xinjiang Petroleum Geology,2017,38(4):460-465.
    [24]ZOU Yushi,LI Sihai,MA Xinfang,et al.Effects of CO2-brine-rock interaction on porosity/permeability and mechanical properties during supercritical-CO2fracturing in shale reservoirs[J].Journal of Natural Gas Science and Engineering,2018,49:157-168.
    [25]ZHAO Huawei,NING Zhengfu,WANG Qing,et al.Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry[J].Fuel,2015,154:233-242.
    [26]LYU Chaohui,NING Zhengfu,WANG Qing,et al.Application of NMR T2to pore size distribution and movable fluid distribution in tight sandstones[J].Energy&Fuels,2018,32(2):1 395-1 405.
    [27]杜玉昆.超临界二氧化碳射流破岩机理研究[D].山东青岛:中国石油大学(华东),2012.DU Yukun.Study on the rock-breaking mechanism of supercritical carbon dioxide jet[D].Qingdao,Shandong:China University of Petroleum(East China),2012.
    [28]TUDOR R,VOZNIAK C,PETERS W,et al.Technical advances in liquid CO2fracturing[C].Calgary,Alberta:Annual Technical Meeting,1994.
    [29]ITO T.Effect of pore pressure gradient on fracture initiation in fluid saturated porous media:rock[J].Engineering Fracture Mechanics,2008,75(7):1 753-1 762.
    [30]赵凯,赵文龙,石林,等.断块油气藏开采对地应力和破裂压力的影响规律[J].新疆石油地质,2017,38(6):723-728.ZHAO Kai,ZHAO Wenlong,SHI Lin,et al.Influences of oil and gas production on in-situ stress and fracture pressure in fault-block reservoirs[J].Xinjiang Petroleum Geology,2017,38(6):723-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700