海水升温与氮限制对三角褐指藻生长及光合作用的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of ocean warming and nitrogen limitation on growth and photosynthesis of Phaeodactylum tricornutum
  • 作者:柳清杨 ; 徐兴莲 ; 刘佳仪 ; 梅洪 ; 吴红艳
  • 英文作者:LIU Qing-yang;XU Xing-lian;LIU Jia-yi;MEI Hong;WU Hong-yan;Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology,Key Laboratory of Ecological Remediation for Lakes and Rivers and Algal Utilization of Hubei Province;
  • 关键词:硅藻 ; 氮限制 ; 光合作用
  • 英文关键词:diatom;;nitrogen limitation;;photosynthesis
  • 中文刊名:HUTB
  • 英文刊名:Marine Science Bulletin
  • 机构:湖北工业大学工业发酵湖北省协同创新中心河湖生态修复与藻类利用湖北省重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:海洋通报
  • 年:2019
  • 期:v.38;No.223
  • 基金:国家自然科学基金(31270452);; 教育部科学技术项目(213026A);; 淡水生态与生物技术国家重点实验室开放基金(2014FB04);; 河湖生态修复与藻类利用湖北省重点实验室项目(HHKF201508)
  • 语种:中文;
  • 页:HUTB201902008
  • 页数:8
  • CN:02
  • ISSN:12-1076/P
  • 分类号:77-84
摘要
以硅藻三角褐指藻为实验材料,研究升温(24℃)与氮限制(40μmol/L)对藻细胞生长及光合特性的影响。结果显示,氮限制使得电子从Q_A~-到Q_B的传递受阻,降低了其对光能的吸收利用效率,导致其对高光强的耐受能力下降,从而降低生长速率。而升温并未影响三角褐指藻细胞电子传递速率、单位反应中心耗散的能量(DI_o/RC)、捕获的用于还原Q_A的能量(TR_o/RC)以及吸收的能量(ABS/RC)等,表明升温对其PSⅡ光化学反应影响不显著。但应对高光强时,升温使得藻细胞修复速率降低,导致藻细胞受光抑制明显。本研究表明,相对于温度,氮限制对三角褐指藻细胞光合作用和生长的影响更为显著,而海水升温与氮限制耦合作用会进一步影响三角褐指藻的初级生产贡献。
        The marine diatom Phaeodactylum tricornutum was selected as experimental material to investigate the impact of ocean warming(24 ℃) and nitrogen limitation(40 μmol/L) on its growth and photosynthetic characteristics. Results showed that nitrogen limitation inhibited the electron transfer from Q_A~- to Q_B, reduced the absorption and utilization of light energy,lowered the resistant capacity of P. tricornutum to high light intensity, thus resulting in the reduction of growth rate. In contrast, temperature rise did not bring about significant changes on the electron transfer rate, the energy fluxes for dissipation(DI_o/RC), trapping(TR_o/RC), and absorption(ABS/RC) per reaction center. It appeared that the PSⅡ photochemistry was not significantly affected by ocean warming. However, when cells were exposed to high light challenge, the repair rate was decreased by the rise of temperature, leading to marked photoinhibition. Our study indicated that the photosynthesis and growth of P. tricornutum were affected to a greater extent by nitrogen limitation than the rise of temperature, whereas the combination of temperature rise and nitrogen limitation further affected the primary production contribution of P. tricornutum.
引文
Beardall J,Sobrino C,Stojkovic S,2009.Interactions between the impacts of ultraviolet radiation,elevated CO2,and nutrient limitation on marine primary producers.Photochemical and Photobiological Sciences,8(9):1257-1265.
    Boyd P W,Strzepek R F,Fu F,et al,2010.Environmental control of open-ocean phytoplankton groups:now and in the future.Limnology and Oceanography,55(3):1353-1376.
    Campbell D A,Tyystj?rvi E,2012.Parameterization of photosystem II photoinactivation and repair.Biochimica et Biophysica Acta(BBA)-Bioenergetics,1817(1):258-265.
    Gao G,Shi Q,Xu Z G,et al,2018.Global warming interacts with ocean acidification to alter PSII function and protection in the diatom Thalassiosira weissflogii.Environmental and Experimental Botany,147:95-103.
    Gao K,Helbling E W,Hader D P,et al,2012.Responses of marine primary producers to interactions between ocean acidification,solar radiation,and warming.Marine Ecology Progress Series,470(470):167-189.
    Grover J P,1991.Resource competition in a variable environment:phytoplankton growing according to the variable-internal-stores model.American Naturalist,138(4):811-835.
    Hare C E,Leblanc K,Ditullio G R,et al,2007.Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea.Marine Ecology Progress Series,352(12):9-16.
    Huertas I E,Rouco M,López-Rodas V,et al,2011.Warming will affect phytoplankton differently:evidence through a mechanistic approach.Proceedings of the Royal Society B-biological,278:3534-3543.
    Jassby A D,Platt T,1976.Mathematical formulation of the relationship between photosynthesis and light for phytoplankton.Limnology and oceanography,21(4):540-547.
    Kingsolver J G,2009.The well-temperatured biologist.American Naturalist,174:755-768.
    Krüger G H,Tsimilli M,1997.Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves.Physiologia Plantarum,101(2):265-277.
    Li F,Beardall J,Gao K,2018.Diatom performance in a future ocean:interactions between nitrogen limitation,temperature,and CO2-induced seawater acidification.ICES Journal of Marine Science,doi:10,1093/icesjms/fsx239.
    Li G,Gao K,2014.Effects of solar UV radiation on photosynthetic performance of the diatom Skeletonema costatum grown under nitrate limited condition.An International Journal of Algal Research,29(1):27-34.
    Li P M,Gao H Y,Strasser R J,2005.Application of fast chlorophyll fluorescence induced kinetics in photosynthesis research.Journal of Plant Physiology and Molecular Biology,31(6):559-566.
    Li W,Gao K,Beardall J,2015.Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom Phaeodactylum tricornutum.Biogeosciences,11(12):2383-2393.
    Li W,Gao K,Beardall J,2012.Interactive Effects of Ocean Acidification and Nitrogen-Limitation on the Diatom Phaeodactylum tricornutum.Plos One,7(12):e51590.
    Litchman E,Klausmeier C A,Yoshiyama K,2009.Contrasting size evolution in marine and freshwater diatoms.Proceedings of the National Academy of Sciences,106(8):2665-2670.
    Loebl M,Cockshutt A M,Campbell D A,2010.Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi.Limnology and Oceanography,55(5):2150-2160.
    Louanchi F,Najjar R G,2000.A global monthly climatology of phosphate,nitrate,and silicate in the upper ocean:Spring-summer export production and shallow remineralization.Global Biogeochem Cycles,14(3):957-977.
    Lurling M,Eshetu F,Faassen E J,et al,2013.Comparison of cyanobacterial and green algal growth rates at different temperatures.Freshwater Biology,58(3):552-559.
    Meehl G A,Stocker T F,Collins W D,et al,2007.Global climate projections.In:Solomon S,Qin D,Manning M,Chen Z,Marquis M,Averyt K B,Tignor M,Miller H L.(Eds.),Climate change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Pp.748-845.Cambridge University Press,Cambridge.
    Morabito G,Oggioni A,Caravati E,et al,2007.Seasonal morphological plasticity of phytoplankton in Lago Maggiore(N.Italy).Hydrobiologia,578(1):47-57.
    Peter K H,Sommer U,2012.Phytoplankton Cell Size:intraand interspecific effects of warming and grazing.Plos One,7(11):9.
    Petrou K,Kranz S,Doblin M A,et al,2012.Photophysiological responses of Photophysiological responses of fragilariopsis cylindrus(Bacillariophyceae)to nitrogen depletion at two temperatures.Journal of Phycology,48(1):127-136.
    Polovina J J,Woodworth P A,2012.Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll,1998-2007.Deep Sea Research Part II:Topical Studies in Oceanography,77-80:82-88.
    Sarthou G,Timmermans K R,Blain S,et al,2003.Growth physiology and fate of diatoms in the ocean:a review.Journal of Sea Research,53(2):25-42.
    Schabhuttl S,Hingsamer P,Weigelhofer G,et al,2013.Temperature and species richness effects in phytoplankton communities.Oecologia,171(2):527-536.
    Strasser R J,Srivastava A,Govindjee,1995.Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.Photochemistry and Photobiology,61(1):32-42.
    Key T,Mc Carthy A,Douglas A,2010.Cell size trade-offs govern light exploitation strategies in marine phytoplankton.Environmental Microbiology,12(1):95-104.
    White A J,Critchley C,1999.Rapid light curves:a new fluorescence method to assess the state of the photosynthetic apparatus.Photosynthesis research,59(1):63-72.
    Xie Y,Tilstone G H,Widdicombe C,et al,2015.Effect of increases in temperature and nutrients on phytoplankton community structure and photosynthesis in the western English Channel.Marine Ecology Progress,519(1):61-73.
    Xiu P,Chai F,2012.Spatial and temporal variability in phytoplankton carbon,chlorophyll,and nitrogen in the North Pacific.Journal of Geophysical Research Oceans,117(C11):17.
    Yuan W,Gao G,Shi Q,et al,2018.Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges.Marine Environmental Research,135:63-69.
    李琰,范文静,骆敬新,等,2018.2017年中国近海海温和气温气候特征分析.海洋通报,37(3):296-302.
    高月鑫,江志兵,曾江宁,等,2018.春季长江口北支邻近海域浮游植物群落及其影响因子.海洋通报,37(4):430-439.
    高亚辉,梁君荣,陈长平,等,2011.海洋硅藻多样性与生态作用研究.厦门大学学报(自然科学版),50(2):455-464.
    李鹏民,高辉远,Strasser R J,2005.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报,31(6):559-566.
    梁英,冯力霞,尹翠玲,等,2006.高温胁迫对三角褐指藻和纤细角毛藻叶绿素荧光动力学的影响.中国海洋大学学报(自然科学版),36(3):427-433.
    刘皓,高永利,殷克东,等,2010.不同氮磷比对中肋骨条藻和威氏海链藻生长特性的影响.热带海洋学报,29(6):92-97.
    王璐瑶,桑敏,李爱芬,等,2011.不同氮限制水平对硅藻金色奥杜藻(Odontella aurita)生长及光合特性的影响.中国藻类学会会员代表大会暨学术讨论会.
    赵洋甬,潘双叶,胡建林,等,2013.温度胁迫对曲壳藻光合作用的影响.现代科学仪器,1:129-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700