采用磁控溅射法在Si(100)生长InN薄膜及其禁带宽度与拉曼的测试(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Band Gap and Raman Shift of InN Grown on Si(100) by Radio-Frequency Sputtering
  • 作者:王雪文 ; 李婷婷 ; 苏星星 ; 吴朝科 ; 翟春雪 ; 胡峰 ; 张志勇 ; 赵武
  • 英文作者:Wang Xuewen;Li Tingting;Su Xingxing;Wu Zhaoke;Zhai Chunxue;Hu Feng;Zhang Zhiyong;Zhao Wu;Northwest University;
  • 关键词:薄膜 ; 晶体生长 ; 磁控溅射 ; 应力 ; 禁带宽度
  • 英文关键词:thin films;;crystal growth;;magnetron sputtering;;stress;;energy gap
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:西北大学;
  • 出版日期:2018-01-15
  • 出版单位:稀有金属材料与工程
  • 年:2018
  • 期:v.47;No.378
  • 基金:National Natural Science Foundation of China(61405159,61076002);; Natural Science Foundation of Education Commission of Shaanxi Province(2012JK848)
  • 语种:英文;
  • 页:COSE201801013
  • 页数:6
  • CN:01
  • ISSN:61-1154/TG
  • 分类号:73-78
摘要
采用磁控溅射法在Si(100)衬底上生长出高取向性和多种微观形貌的InN薄膜,其中铟作为铟靶,氮气作为氮源。X射线衍射(XRD)和X射线光电子能谱(XPS)表明所有衍射峰和标准的纤锌矿晶型的InN一致,并且在(101),(100)和(002)方向具有极高的取向度。扫描电子显微镜(SEM)和能带衍射谱表明,在Si(100)衬底上可以生长出高质量的不同微观结构的InN晶体薄膜,尤其是溅射功率为60 W,溅射压强为0.4 Pa时表现为标准的正六边形结构。在室温下并且激发波长为λ=633的拉曼测试表明,可以通过E_2(High)峰计算出InN薄膜的应力,由于微观结构的不同导致应力值也不同,A1(LO)峰值比较低是由于迁移率较高导致。紫外吸收测试可以计算出的能带宽度分别为1.07,1.13,1.32 eV。XRD、SEM、XPS、霍尔效应、紫外吸收和拉曼光谱证明生长出的不同微观结构的薄膜可以适应各种需求的传感器和其他设备。
        We have grown the InN films with high orientation and various typical micrographs on Si(100) substrate by radio-frequency(RF) sputtering, with Indium used as Indium target, and Nitrogen as Nitrogen source. The X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) show that all the diffraction peaks are identified to be associated with the wurtzite phase of InN, with high orientation of(101),(100) and(002). The Scanning Electron Microscope(SEM) and Energy Diffraction Spectrum(EDS) reveal that the high-quality crystal films of InN with various typical microstructures could be deposited, especially the standard of the hexagon at 60 W and 0.4 Pa. We also calculated the stress of InN films in E_2(High) by Raman spectra with an excitative wave length λ= 633 nm at room temperature. The values of the stress are different due to various microstructures. The A_1(LO) peaks are lower due to the high mobility. The calculated energies are 1.07, 1.13 and 1.32 eV. The XRD, SEM, XPS, Raman spectra, Hall and UV absorption characterizations demonstrate that we could grow different microstructures of thin films to meet the various requirements of sensors and other devices.
引文
1 Porntheeraphat S,Nukeaw J.Applied Surface Science[J],2008,254(23):7851
    2 Cai X M,Ye F,Hao Y Q et al.Journal of Alloys&Compounds[J],2009,484(1-2):677
    3 Amirhoseiny M,Hassan Z,Ng S S et al.Vacuum[J],2014,106(8):46
    4 Shen C H,Lin H W,Lee H M et al.Thin Solid Films[J],2006,494(1):79
    5 Ivanov S V,Shubina T V,Komissarova T A et al.Journal of Crystal Growth[J],2014,403(10):83
    6 Bi Z X,Zhang R,Xie Z L et al.Journal of Materials Science[J],2007,42(15):6377
    7 Chung Y L,Peng X,Ying C L et al.Thin Solid Films[J],2011,519(20):6778
    8 Feng S,Tan J,Li B et al.Journal of Alloys&Compounds[J],2015,621:232
    9 Hwang J S,Lee C H,Yang F H et al.Materials Chemistry&Physics[J],2001,72(2):290
    10 Ke W C,Lee S J,Kao C Y et al.Journal of Crystal Growth[J],2010,312(21):3209
    11 Shinoda H,Mutsukura N.Thin Solid Films[J],2006,503(1-2):8
    12 Khoshman J M,Kordesch M E.Journal of Non-Crystalline Solids[J],2006,352(52-54):5572
    13 Amirhoseiny M,Hassan Z,Ng S S.Vacuum[J],2014,101(3):217
    14 Roul B,Rajpalke M K,Bhat T N et al.Journal of Crystal Growth[J],2012,354(1):208
    15 Yaguchi H,Kitamura Y,Nishida K et al.Physica Status Solidi[J],2005,2(7):2267
    16 Parala H,Devi A,Hipler F et al.Journal of Crystal Growth[J],2001,231(1-2):68
    17 Jing Q,Yang H,Li W et al.Applied Surface Science[J],2015,331:248
    18 Chauhan A K S,Kumar M,Gupta G.Applied Surface Science[J],2015,345:156
    19 Sugiura H,Wakasugi S,Mizutani H et al.Materials Chemistry&Physics[J],2008,108(2):176
    20 Qian Z G,Yu G,Shen W Z et al.Physica B Condensed Matter[J],2002,318(2-3):180
    21 Wang X,Su X,Hu F et al.Journal of Alloys&Compounds[J],2016,667:346
    22 Pinquier C,Demangeot F,Frandon J et al.Phys Rev B[J],2004,70(11):2516
    23 Wang X,Che S B,Ishitani Y et al.Applied Physics Letters[J],2006,89(89):171 907
    24 Barick B K,Dhar S.Journal of Crystal Growth[J],2015,416:154
    25 Guo Q X,Tanaka T,Nishio M et al.Applied Physics Letters[J],2005,86(23):231 913
    26 Davydov V Y,Klochikhin A A,Emtsev V V et al.Physica Status Solidi[J],2002,234(3):787
    27 Zhao Y,Wu G,Leng J et al.Vacuum[J],2016,124:72
    28 Schoche S,Hofmann T,Darakchieva V et al.Journal of Applied Physics[J],2013,113(1):013 502
    29 Sasaoka T,Mori M,Miyazaki T et al.Journal of Applied Physics[J],2010,108(6):063 538
    30 Vajpeyi A P,Ajagunna A O,Tsiakatouras G et al.Microelectronic Engineering[J],2009,86(s4-6):812

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700