石墨烯/纯钛基复合材料的制备及其导电性能的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of graphene/titanium matrix composites and their conductive properties
  • 作者:张在玉 ; 梁益龙
  • 英文作者:ZHANG Zai-yu;LIANG Yi-long;College of Materials and Metallurgy, Guizhuo University;School of Electronic and Information Engineering, Anshun University;
  • 关键词:粉末冶金 ; 石墨烯 ; 纳米复合材料 ; 烧结 ; 电学性能
  • 英文关键词:powder metallurgy;;graphene;;nanocomposites;;sintering;;electrical properties
  • 中文刊名:YNDZ
  • 英文刊名:Journal of Yunnan University(Natural Sciences Edition)
  • 机构:贵州大学材料与冶金学院;安顺学院电子与信息工程学院;
  • 出版日期:2019-05-10
  • 出版单位:云南大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.201
  • 基金:黔科合重大专项(JZ字(2014)6012)
  • 语种:中文;
  • 页:YNDZ201903018
  • 页数:6
  • CN:03
  • ISSN:53-1045/N
  • 分类号:133-138
摘要
运用球磨分散结合粉末冶金法成功制备了石墨烯纳米片增强纯钛复合材料.复合材料的制备过程主要包括复合粉末的制备、复合材料的压制成型以及高温烧结3个过程.使用OM、SEM、XRD和拉曼光谱等检测手段对制备的复合材料的组织、物相组成以及石墨烯片的缺陷和层数进行了分析检测.运用显微硬度计和四探针电阻仪对最终烧结成型的纯钛块体及石墨烯增强钛基复合材料的硬度和电阻率进行表征.结果表明:石墨烯片分散在复合材料的组织中,添加石墨烯片能显著影响钛基材料的性能,复合材料的硬度和电导率随石墨烯片含量的添加而增大.当石墨烯的添加量为0.3%(w)时,复合材料的硬度达到最大(429 HV),与同样条件烧结的纯钛硬度相比(234 HV)提高80%.其导电率是在石墨烯的添加量为0.4%时才达到最大值(432S·m~(-1)),与同样条件烧结的纯钛的导电率(158 S·m~(-1))相比提高了1.73倍.文章分析了复合材料的硬度和导电性能增强的原因.
        Graphene nanoplatelets(GNPs) reinforced pure titanium matrix(GNPs/Ti) composites were prepared by ball milling dispersion and powder metallurgy methods. The preparation process of GNPs/Ti composites mainly includes the preparation of composite powders, the pressing molding of composite materials,and the high temperature sintering. The microstructure, morphology, composition of facies, defects and layers of GNPs were analyzed and detected by means of optical microscope, scanning electron microscope, X-ray diffractometer(XRD) and Raman spectrum. The hardness and resistivity of the final sintered titanium block and graphene reinforced titanium matrix composites were characterized by microhardness meter and four probe resistor meter. The results show that GNPs do exist in the composites and are stable in the titanium matrix. The addition of graphene microchips makes the hardness and conductivity of the composite material generally larger. When the addition of GNPs was 0.3 wt%, the hardness of the composite material reached maximum(429 HV), which was80% higher than the hardness of pure titanium sintered under the same conditions(234 HV).Its conductivity reached a maximum(432 S·m~(-1)) when the addition of GNPs was 0.4 wt %, which was 1.73 times higher than the conductivity(158 S·m~(-1)) of pure titanium sintered under the same conditions. In this paper, the reasons of hardness and conductivity enhancement of composite materials are analyzed.
引文
[1]谢珮珮.铜铝复合带界面形态控制研究[D].沈阳:东北大学,2011:1-4.Xie P P.Study on control of interface shape in copperaluminum composite strip[D].Shengyang:Northeastern University,2011:1-4
    [2]韩远飞,段宏强,吕维洁,等.非连续增强金属基复合材料剧烈塑性变形行为研究进展[J].复合材料学报,2015,32(1):1-12.Han Y F,Duan H Q,Lyu W J,et al.Research progress on severe plastic deformation behaviors of discontinuously reinforced metal matrix composite[J].Composites Science&Technology,2015,32(1):1-12.
    [3]Tjong S C,Mai Y W.Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites[J].Composites Science&Technology,2008,68(3-4):583-601.
    [4]Morsi K,Patel V V.Processing and properties of titanium-titanium boride(TiBw)matrix composites-A review[J].Journal of Materials Science,2007,42:2 037-2 047.DOI:10.1007/s10853-006-0776-2.
    [5]Chen Y L,Hu Z A,Chang Y Q,et al.Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix[J].Journal of Physical Chemistry C,2011,115(5):2 5632 571.DOI:10.1021/jp109597n.
    [6]Golmakani M E,Rezatalab J.Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics[J].Composite Structures,2014,111(1):85-97.
    [7]杨帅.少层石墨烯增强铜基复合材料制备和性能研究[D].哈尔滨:哈尔滨工业大学,2011:16-19.Yang S.Preparation and properties of copper composites reinforced with few layers graphene sheet[D]Harbin:Harbin Institute of Technology,2011:16-19.
    [8]Hu Z R,Tong G Q,Nian Q,et al.Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites[J].Composites Part B Engineering,2016,93:352-359.DOI:10.1016/j.compositesb.2016.03.043.
    [9]Allen M J.Honeycomb carbon-A study of graphene[D].Los Angeles:University of California(Los Angeles),USA,2009.
    [10]Mu X N,Zhang H M,Cai H N.Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J].Materials Science&Engineering A,2017,687:164-174.
    [11]Ferrari A C.Raman spectroscopy of graphene and graphite:Disorder,electron-phonon coupling,doping and nonadiabatic effects[J].Solid State Communications,2007,143(1-2):47-57.DOI:10.1016/j.ssc.2007.03.052.
    [12]Pumera M.Graphene-based nanomaterials and their electrochemistry[J].Chemical Society Reviews,2010,42(11):4 146-4 157.
    [13]Lin Y M,Dimitrakopoulos C,Jenkins K A.100-GHz transistors from wafer-scale epitaxial graphene[J].Science,2010,327(5966):662-662.
    [14]Fernández-Ibá?ez P,Polo-López M I,Malato S.Solar photocatalytic disinfection of water using titanium dioxide graphene composites[J].Chemical Engineering Journal,2015,261:36-44.
    [15]Wen-Shi M A,Zhou J W,Cheng S X.Preparation and Characterization of Graphene[J].Journal of Chemical Engineering of Chinese Universities,2010,24(4):719-722.
    [16]Saito R.Raman spectroscopy of graphene edges[J].Nano Letters,2009,9(4):1 433-1 441.
    [17]Chen L Y,Konishi H,Fehrenbacher A.Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites[J].Scripta Materialia,2012,67(67):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700