用户名: 密码: 验证码:
航空煤油裂解产物燃烧机理构建与动力学模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism construction and kinetic simulation for the combustion of cracked kerosene
  • 作者:刘明夏 ; 谈宁馨 ; 王静
  • 英文作者:LIU Ming-xia;TAN Ning-xin;WANG Jing-bo;College of Chemical Engineering,Sichuan University;
  • 关键词:煤油裂解产物 ; 替代燃料 ; 反应机理 ; 点火延迟
  • 英文关键词:cracked kerosene;;surrogate fuel;;reaction mechanism;;ignition delay time
  • 中文刊名:HXYJ
  • 英文刊名:Chemical Research and Application
  • 机构:四川大学化学工程学院;
  • 出版日期:2019-02-15
  • 出版单位:化学研究与应用
  • 年:2019
  • 期:v.31
  • 基金:国家重点研发计划(2017YFB0202400,2017YFB0202401)资助
  • 语种:中文;
  • 页:HXYJ201902015
  • 页数:5
  • CN:02
  • ISSN:51-1378/O6
  • 分类号:104-108
摘要
针对航空煤油典型裂解工况的裂解产物,本文提出了以2.99%氢气、45.05%甲烷、36.96%乙烯、0.76%环己烯、8.89%甲苯和5.35%正十二烷(摩尔分数)的六组分煤油裂解产物替代模型,构建了包含323个物种,1544步反应的化学动力学机理。使用Chemkin-pro程序进行宽温度范围裂解产物的动力学模拟,点火延迟模拟结果与实验值吻合较好;点火延迟敏感性分析的结果表明HO_2+OH=H_2O+O_2是机理中的关键反应,同时燃烧中间产物与氧气、HO_2和OH自由基的反应也对点火影响较大。该机理模拟精度较高,能够较好的再现航空煤油裂解产物的燃烧特性。
        For the cracked products of aviation kerosene under typical pyrolysis condition,a six-component surrogate model comprising 2.99%hydrogen,45.05%methane,36.96%ethylene,0.76%cyclohexene,8.89%toluene and 5.35%n-dodecane(mole fraction)was proposed,and then a detailed reaction mechanism for the combustion of the cracked products that consists of 323 species and 1544 elementary reactions has been developed.The proposed mechanism has been validated by the kinetic simulation of ignition delay time with Chemkin-pro package.The predicted results are in good agreement with the experimental data.Moreover,sensitivity analysis reveals that HO_2+OH=H_2O+O_2 is the key reaction and the reactions between intermediates and O_2,HO_2 and OH also play an important role on the ignition behavior.This mechanism can reproduce the combustion characteristics of cracked aviation kerosene with high accuracy.
引文
[1]Wang Y J,Zhang D X,Wan Z J,et al.A comparative study of ignition delay of cracked kerosene/air and kerosene/air over a wide temperature range[J].Acta Phys-Chim Sin,2019,35(X):0001-0009.
    [2]肖保国,杨顺华,赵慧勇,等.RP-3航空煤油燃烧的详细和简化化学动力学模型[J].航空动力学报,2010,25(9):1948-1955.
    [3]郑东,于维铭,钟北京.RP-3航空煤油替代燃料及其化学反应动力学模型[J].物理化学学报,2015,31(4):636-642.
    [4]徐佳琪,郭俊江,刘爱科,等.RP-3替代燃料自点火燃烧机理构建及动力学模拟[J].物理化学学报,2015,31(4):643-652.
    [5]Dagaut P,Reuillon M,Boettner J C,et al.Kerosene combustion at pressures up to 40 atm:Experimental study and detailed chemical kinetic modeling[J].Symp Combust,1994,25(1):919-926.
    [6]Dooley S,Sang H W,Chaos M,et al.A jet fuel surrogate formulated by real fuel properties[J].Combust Flame,2010,157(12):2333-2339.
    [7]Guéret C,Cathonnet M,Boettner J C,et al.Experimental study and modeling of kerosene oxidation in a jet-stirred flow reactor[J].Symp Combust,1991,23(23):211-216.
    [8]Malewicki T,Gudiyella S,Brezinsky K.Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethyl-benzene surrogate fuel[J].Combust Flame,2013,160(1):17-30.
    [9]刘凯,甄旭东.汽油替代燃料化学反应机理研究现状[J].汽车维修,2016(3):10-15.
    [10]Pitz W J,Mueller C J.Recent progress in the development of diesel surrogate fuels[J].Prog Energy Combust Sci,2011,37(3):330-350.
    [11]李军,邵菊香,刘存喜,等.碳氢燃料热裂解机理及化学动力学模拟[J].化学学报,2010,68(3):239-245.
    [12]郭俊江,李树豪,谈宁馨,等.正庚烷低温燃烧机理构建[J].工程热物理学报,2014,35(11):2298-2302.
    [13]华晓筱,王静波,王全德,等.正十二烷高温燃烧机理的构建及模拟[J].物理化学学报,2011,27(12):2755-2761.
    [14]郭俊江,华晓筱,王繁,等.采用系统的方法自动构建链烷烃高温燃烧反应机理[J].物理化学学报,2014(6):1027-1041.
    [15]郭俊江,唐石云,李瑞,等.高碳烃宽温度范围燃烧机理构建及动力学模拟[J].物理化学学报,2019,35(2):182-192.
    [16]谈宁馨,王静波,华晓筱,等.甲基环己烷的高温燃烧机理及动力学模拟[J].高等学校化学学报,2011,32(8):1832-1837.
    [17]Guo J J,Wang J B,Hua X X,et al.Mechanism construction and simulation for high-temperature combustion of n-propylcyclohexane[J].Chem Res Chin Uni,2014,30(3):480-488.
    [18]李东艳,王静波,郭俊江,等.乙烯中低温点火动力学机理研究[J].化学学报,2017,75(4):375-382.
    [19]Ribaucour M,Lemaire O,Minetti R.Low-temperature oxidation and autoignition of cyclohexene:A modeling study[J].Proc Combust Inst,2002,29(1):1303-1310.
    [20]Dayma G,Glaude P A,Fournet R,et al.Experimental and modeling study of the oxidation of cyclohexene[J].Int J Chem Kinet,2003,35(7):273-285.
    [21]Metcalfe W K,Dooley S,Dryer F L.Comprehensive detailed chemical kinetic modeling study of toluene oxidation[J].Energy Fuels,2011,25(11):4915-4936.
    [22]李树豪,刘爱科,郭俊江,等.甲苯燃烧机理的简化[C].中国化学会学术年会,2014.
    [23]Guo J J,Xu J Q,Li Z,et al.Temperature and pressure dependent rate coefficients for the reaction of C2H4+HO2 on the C2H4O2H potential energy surface[J].J Phys Chem A,2015,119(13):3161-3170.
    [24]Benson SW.Thermochemical Kinetics[M],New York:Wiley,1976,1-223.
    [25]王秧,王静波,李象远.RP-3航空燃料中低温燃烧机理构建及动力学模拟[J].化学研究与应用,2018,30(6):946-952.
    [26]李树豪,方亚梅,王繁,等.庚酸甲酯高温燃烧化学动力学机理的系统简化和分析[J].高等学校化学学报,2013,34(7):1714-1722.
    [27]刘爱科,李树豪,王繁,等.乙烯氧化动力学机理简化[J].推进技术,2015,36(1):142-148.
    [28]Diego S.CHEMKIN-PRO 15092,Reaction Design,2009.
    [29]Kalyan K,Andreas G,Friedrich D.Predicting ignition delay times of C1-C3 alkanes/hydrogen blends at gas engine conditions[J].Fuel,2018,222:859-869.
    [30]Kumar K,Mittal G,Sung C,et al.An experimental investigation of ethylene/O2/diluent mixtures:Laminar flame speeds with preheat and ignition delays at high pressures[J].Combust Flame,2008,153(3):343-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700