电信号分子在电化学功能核酸生物传感器中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Electrical Signal Molecules in Electrochemical Functional Nucleic Acids Biosensors
  • 作者:谢银侠 ; 王蔚然 ; 程楠 ; 许文涛
  • 英文作者:XIE Yin-xia;WANG Wei-ran;CHENG Nan;XU Wen-tao;College of Food Science and Nutrition Engineering,China Agricultural University;
  • 关键词:电信号分子 ; 功能核酸电化学生物传感器 ; 信号转换
  • 英文关键词:electrical signal molecule;;functional nucleic acids electrochemical biosensors;;signal transition
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:中国农业大学食品科学与营养工程学院;
  • 出版日期:2019-05-26
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.322
  • 基金:转基因重大专项(2018ZX08012-001-004)
  • 语种:中文;
  • 页:SWJT201905023
  • 页数:13
  • CN:05
  • ISSN:11-2396/Q
  • 分类号:163-175
摘要
电信号分子是应用于功能核酸电化学生物传感器中起着信号转换作用的具有电化学活性且能够和核酸相互作用或是可以标记在核酸链上的一类分子的统称。电信号分子对于功能核酸电化学生物传感器是必不可少的一部分,它对于电化学生物传感器检测的灵敏度和应用的普及性都至关重要。简要介绍了5大类电信号分子,即染料类电信号分子、金属有机配合物类电信号分子、纳米材料类电信号分子、类过氧化氢酶类电信号分子、有机小分子类电信号分子,详细阐述了这些电信号在功能核酸电化学生物传感器中的应用,主要从产生电信号的方式、实际应用以及每种电信号的使用优缺点进行分析,并对新的电信号分子的发现或设计进行了展望,以期对后续有关电信号的研究有借鉴作用。
        Electrical signal molecules refer to a class of molecules that have an electrochemical activity as signal-switching role in functional nucleic acids electrochemical biosensors,and can interact with nucleic acids or can be Labeled on nucleic acid strands.Electrical signal molecules are essential part of functional nucleic acids electrochemical biosensors,and crucial for the detection sensitivity and application popularity of functional nucleic acids electrochemical biosensors. In this article we briefly introduced 5 major categories of electrical signal molecules,i.e.,dye class,organometallic complexes,nanomaterials,catalase-like,and organic small molecule. Then we demonstrated their applications in functional nucleic acids electrochemical biosensors,mainly from 3 aspects :the methods of generating electrical signals,practical applications,and the advantages and disadvantages of each electrical signal. In the end,we Look on the future discovery or design of new electrical signal molecules. It's expected to be useful for the subsequent study of electrical signals.
引文
[1]Tjong V, Tang L, Zauscher S, et al.“Smart” DNA interfaces[J].Chemical Society Reviews, 2014, 43(5):1612-1626.
    [2]Pinheiro AV, Han D, et al. Challenges and opportunities for structural DNA nanotechnology[J]. Nat Nanotechnol, 2011, 6(12):763.
    [3]Gong L, Zhao Z, Lv YF, et al. DNAzyme-based biosensors and nanodevices[J]. Chem Commun, 2015, 51(6):979-995.
    [4]Mariani S, Scarano S, Spadavecchia J, et al. A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars[J]. Biosensors and Bioelectronics, 2015, 74:981-988.
    [5]Huang Y, Tian Z, Sun LP, et al. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle[J]. Opt Express, 2015, 21:26962-26968.
    [6]Li S, Qiu W, Zhang X, et al. A high-performance DNA biosensor based on the assembly of gold nanoparticles on the terminal of hairpin-structured probe DNA[J]. Sensors and Actuators B:Chemical, 2016, 223:861-867.
    [7]Kim S, Choi SJ. A lipid-based method for the preparation of a piezoelectric DNA biosensor[J]. Anal Biochem, 2014, 458:1-3.
    [8]Xuan F, Luo X, Hsing IM. Conformation-dependent exonuclease III activity mediated by metal ions reshuffling on thymine-rich DNA duplexes for an ultrasensitive electrochemical method for Hg2+detection[J]. Anal Chem, 2013, 85(9):4586-4593.
    [9]Hu W, Min X, Li X, et al. DNAzyme catalytic beacons-based a label-free biosensor for copper using electrochemical impedance spectroscopy[J]. RSC Advances, 2016, 6(8):6679-6685.
    [10]Liu A, et al. Development of electrochemical DNA biosensors[J].TrAC Trends Anal Chem, 2012, 37:101-111.
    [11]尤加宇.有机染料分子和DNA相互作用的电化学研究及分析应用[D].青岛:青岛科技大学, 2006.
    [12]姜吉刚.苏木精与DNA作用机理的荧光光谱[J].光谱实验室,2012, 29(5):2814-2817.
    [13]Mao Y, Liu J, He D, et al. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing[J].Talanta, 2015, 143:381-387.
    [14]Kerman K, et al. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes[J]. Anal Chim Acta, 2002, 462(1):39-47.
    [15]Yun W, Jiang J, Cai D, et al. Ultrasensitive electrochemical detection of UO22+based on DNAzyme and isothermal enzyme-free amplification[J]. RSC Advances, 2016, 6(5):3960-3966.
    [16]Zhu Y, Zeng G, Zhang Y, et al. Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead(II)detection based on Pb2+-inducedG-richDNAconformation[J].Analyst, 2014, 139(19):5014-5020.
    [17]Liu P, Pang J, Yin H, et al. G-quadruplex functionalized nano mesoporous silica for assay of the DNA methyltransferase activity[J]. Analytica Chimica Acta, 2015, 879:34-40.
    [18]Kong DM, Ma YE, Wu J, et al. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet[J].Chemistry-A European Journal, 2009, 15(4):901-909.
    [19]Li F, Feng Y, Zhao C, et al. Crystal violet as a G-quadruplexselective probe for sensitive amperometric sensing of lead[J].Chem Commun, 2011, 47(43):11909-11911.
    [20]Raoof JB, Ojani R, Ebrahimi M, et al. Developing a nano-biosensor for DNA hybridization using a new electroactive Label[J].Chinese Journal of Chemistry, 2011, 29(11):2541-2551.
    [21]Ebrahimi M, Raoof JB, Ojani R. Novel electrochemical DNA hybridization biosensors for selective determination of silver ions[J]. Talanta, 2015, 144:619-626.
    [22]Aghili Z, Nasirizadeh N, et al. A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products[J]. Biosens Bioelectron, 2017, 95:72-80.
    [23]Ligaj M, Tichoniuk M, Gwiazdowska D, et al. Electrochemical DNA biosensor for the detection of pathogenic bacteria Aeromonas hydrophila[J]. Electrochimica Acta, 2014, 128:67-74.
    [24]Ahmed MU, Saito M, Hossain MM, et al. Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification[J]. Analyst, 2009, 134(5):966-972.
    [25]JuH,YeY,ZhuY.Interactionbetweennileblueand immobilized single-or double-stranded DNA and its application in electrochemical recognition[J]. Electrochimica Acta, 2005, 50(6):1361-1367.
    [26]Alipour E, Allaf FN, Mahmoudi-Badiki T. Investigation of specific interactions between Nile blue and single type oligonucleotides and its application in electrochemical detection of hepatitis C 3a virus[J]. J Solid State Electrochem, 2016, 20(1):183-192.
    [27]徐佳.过渡金属有机配合物的合成、表征及催化应用[D].合肥:合肥工业大学, 2017.
    [28]Zhou J, Xu M, Tang D, et al. Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNAbased hybridization chain reaction[J]. Chem Commun, 2012, 48(100):12207-12209.
    [29]Dai S, Xue Q, Zhu J, et al. An ultrasensitive fluorescence assay for protein detection by hybridization chain reaction-based DNA nanotags[J]. Biosens Bioelectron, 2014, 51(2):421-425.
    [30]Huang YL, Gao ZF, Jia J, et al. A label-free electrochemical sensor for detection of mercury(II)ions based on the direct growth of guanine nanowire[J]. J Hazard Mater, 2016, 308:173-178.
    [31]Cai W, Xie S, Zhang J, et al. An electrochemical impedance biosensor for Hg2+detectionbasedonDNAhydrogelbycoupling with DNAzyme-assisted target recycling and hybridization chain reaction[J]. Biosensors and Bioelectronics, 2017, 98:466-472.
    [32]陈灿辉,李红,朱伟,张全新.二茂铁及其与DNA复合物的电化学行为[J].物理化学学报, 2005(10):1067-1072.
    [33]Wei W, Zhang L, Ni Q, et al. Fabricating a reversible and regenerable electrochemical biosensor for quantitative detection of antibody by using “triplex-stem” DNA molecular switch[J].Analytica Chimica Acta, 2014, 845:38-44.
    [34]Zhang Y, Xiao S, Li H, et al. A Pb2+-ion electrochemical biosensor based on single-stranded DNAzyme catalytic beacon[J]. Sensors and Actuators B:Chemical, 2016, 222:1083-1089.
    [35]Xiong E, Wu L, Zhou J, et al. A ratiometric electrochemical biosensor for sensitive detection of Hg2+basedonthymine-Hg2+-thymine structure[J]. Anal Chim Acta, 2015, 853:242-248.
    [36]Jia J, et al. A regenerative ratiometric electrochemical biosensor for selective detecting Hg2+basedonY-shaped/hairpinDNA transformation[J]. Anal Chim Acta, 2016, 908:95-101.
    [37]Miao P, et al. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions[J]. ACS Appl Mater Interfaces, 2017, 9(4):3940-3947.
    [38]黄敏.萘啶衍生物的合成及其在电化学检测DNA中的应用研究[D].武汉:湖北大学, 2016.
    [39]Cui HF, Xu TB, Sun YL, et al. Hairpin DNA as a biobarcode modifiedongoldnanoparticlesforelectrochemicalDNA detection[J]. Anal Chem, 2015, 87(2):1358-1365.
    [40]Shen L, Chen Z, Li Y, et al. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au Bio-Bar codes[J]. Anal Chem, 2008, 80(16):6323-6328.
    [41]Huang H, et al. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection[J]. Biosens Bioelectron, 2015, 68:442-446.
    [42]Liu Z, et al. Label-free and signal-on electrochem-iluminescence aptasensor for ATP based on target-induced linkage of split aptamer fragments by using[Ru(phen)3]2+intercalatedintodoublestrand DNA as a probe[J]. Chem A European J, 2010, 16(45):13356-13359.
    [43]Zhan F, Liao X, Gao F, et al. Electroactive crown ester-Cu2+complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s[J]. Biosens Bioelectron, 2017, 92:589-595.
    [44]Zhu H, et al. Electrochemical sensor for melamine based on its copper complex[J]. Chem Commun, 2010, 13:2259-2261.
    [45]Wang Q, Gao F, Ni J, et al. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment[J]. Sci Rep, 2016, 6:22441.
    [46]Wang X, et al. A Novel DNA electrochemical sensor based on grafting of L-aspartic acid and Cu2+ions on the terminal of molecule beacons[J]. Int J Electrochem Sci, 2013, 8:7529-7541.
    [47]Mix M, Rüger J, Krüger S, et al. Electrochemical detection of 0. 6%genetically modified maize MON810 in real flour samples[J].Electrochemistry Communications, 2012, 22:137-140.
    [48]Wang MQ, Du XY, Liu LY, et al. DNA biosensor prepared by electrodeposited Pt-nanoparticles for the detection of specific deoxyribonucleicacidsequenceingeneticallymodified soybean[J]. Chinese J Anal Chem, 2008, 36(7):890-894.
    [49]Fan H, Chang Z, Xing R, et al. An Electrochemical aptasensor for detection of thrombin based on target protein-induced strand displacement[J]. Electroanalysis, 2008, 20(19):2113-2117.
    [50]Tang S, Lu W, Gu F, et al. A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification[J].Electrochimica Acta, 2014, 134:1-7.
    [51]Yang Y, Yuan Z, Liu XP, et al. Electrochemical biosensor for Ni2+detectionbasedonaDNAzyme-CdSenanocomposite[J].Biosensors and Bioelectronics, 2016, 77:13-18.
    [52]Park H, Hwang SJ, Kim K. An electrochemical detection of Hg2+ion using graphene oxide as an electrochemically active indicator[J].Electrochemistry Communications, 2012, 24:100-103.
    [53]Zhang Z, et al. One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of Hg(II)[J]. Sensor Actuat Chem, 2016, 225:453-462.
    [54]Wang H, et al. Electrochemical DNA probe for Hg2+detection based on a triple-helix DNA and Multistage Signal Amplification Strategy[J]. Biosensor Bioelectron, 2016, 86:907-912.
    [55]Wang N, Lin M, Dai H, et al. Functionalized gold nanoparticles/reduced graphene oxide nanocompositesfor ultrasensitive electrochemical sensing of mercury ions based on thymine-mercurythymine structure[J]. Biosens Bioelectron, 2016, 79:320-326.
    [56]Xu W, Zhou X, et al. label-free and enzyme-free strategy for sensitive electrochemical lead aptasensor by using metal-organic frameworks Loaded with AgPt nanoparticles as signal probes and electrocatalytic enhancers[J]. Electrochim Acta, 2017, 251:25-31.
    [57]Rogez G, et al. Layered hydroxide hybrid nanostructures:a route to multifunctionality[J]. Chem Soc Rev, 2011, 40(2):1031.
    [58]Tang J, Huang Y, Zhang C, et al. DNA-based electrochemical determination of mercury(II)by exploiting the catalytic formation of gold amalgam and of silver nanoparticles[J]. Microchim Acta,2016, 183(6):1805-1812.
    [59]Miao P, et al. Tetrahedral DNA nanostructureba-sed microRNA biosensor coupled with catalytic recycling of the analyte[J]. ACS Appli Mater Interfaces, 2015, 7(11):6238-6243.
    [60]Yuan Y, et al. An ultrasensitive electrochemical aptasensor with autonomous assembly of hemin-G-quadruplex DNAzyme nanowires for pseudo triple-enzyme cascade electrocatalytic amplification[J]. Chem Commun, 2013, 49(66):7328-7330.
    [61]Zhu Q, et al. Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor[J]. Sensor Actuat B Chem, 2015, 207:819-826.
    [62]Zhang B, Chen J, Liu B, et al. Amplified electrochemical sensing of lead ion based on DNA-mediated self-assembly-catalyzed polymerization[J]. Biosens Bioelectron, 2015, 69:230-234.
    [63]Gao F, et al. label-free electrochemical lead(II)aptasensor using thionine as the signaling molecule and graphene as signalenhancing platform[J]. Biosens Bioelectron, 2016, 81:15-22.
    [64]Zhou Q, Lin Y, Lin Y, et al. Highly sensitive electrochemical sensing platform for lead ion based on synergetic catalysis of DNAzyme and Au-Pd porous bimetallic nanostructures[J].Biosensors and Bioelectronics, 2016, 78:236-243.
    [65]Jiang B, et al. label-free and amplified aptasensor for thrombin detection based on background reduction and direct electron transfer of hemin[J]. Biosensor Bioelectron, 2013, 43:289-292.
    [66]Yu Y, et al. Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification[J]. Anal Chem, 2014, 86(16):8200-8205.
    [67]BalintováJ, et al. Anthraquinone as a redox label for DNA:Synthesis, enzymatic incorporation, and electrochemistry of anthraquinone-modified nucleosides, nucleotides, and DNA[J].Chem A European J, 2011, 17(50):14063-14073.
    [68]Zhang Y, Zeng GM, Tang L, et al. Quantitative detection of trace mercury in environmental media using a three-dimensional electrochemical sensor with an anionic intercalator[J]. RSC Advances, 2014, 4(36):18485-18492.
    [69]Zhou Y, et al. A novel biosensor for silver(I)ion detection based on nanoporous gold and duplex-like DNA scaffolds with anionic intercalator[J]. RSC Adv, 2015, 5(85):69738-69744.
    [70]Bala A, Pietrzak M, Górski?, et al. Electrochemical determination of lead ion with DNA oligonucleotide-based biosensor using anionic redox marker[J]. Electrochimica Acta, 2015, 180:763-769.
    [71]Fan H, Zhao K, Lin Y, et al. A new electrochemical biosensor for DNA detection based on molecular recognition and lead sulfide nanoparticles[J]. Anal Biochem, 2011, 419(2):168-172.
    [72]Li C, Hu X, Lu J, et al. Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood[J]. Chem Sci, 2017, 9(4):979-984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700