石墨烯基复合材料光催化还原二氧化碳研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Photocatalytic Carbon Dioxide Reduction over Composites Based on Graphene
  • 作者:李坤林 ; 宁平 ; 李凯 ; 孙鑫 ; 王驰
  • 英文作者:Li Kunlin;Ning Ping;Li Kai;Sun Xin;Wang Chi;Faculty of Environmental Science and Engineering,Kunming University of Science and Technology;Faculty of Chemical Engineering,Kunming University of Science and Technology;
  • 关键词:石墨烯 ; 光催化 ; 二氧化碳 ; 温室效应
  • 英文关键词:graphene;;photocatalytic;;carbon dioxide;;greenhouse effect
  • 中文刊名:HXGY
  • 英文刊名:Chemical Industry and Engineering
  • 机构:昆明理工大学环境科学与工程学院;昆明理工大学化学工程学院;
  • 出版日期:2017-12-27 15:01
  • 出版单位:化学工业与工程
  • 年:2019
  • 期:v.36
  • 语种:中文;
  • 页:HXGY201902004
  • 页数:10
  • CN:02
  • ISSN:12-1102/TQ
  • 分类号:42-51
摘要
化石燃料的燃烧产生的二氧化碳(CO_2)所引起的温室效应已成为全球性问题。利用太阳光催化还原CO_2,不仅可以降低温室效应的危害,还可以提供碳氢燃料,缓解能源短缺问题。石墨烯作为一种新型的光催化剂载体材料,近年来受到越来越多人的关注。综述了近年来石墨烯基复合材料光催化还原CO_2的研究进展,并对今后的研究重点做出了展望。
        The greenhouse effect caused by carbon dioxide(CO_2) from the burning of fossil fuels has become a global problem. Using sunlight to photocatalytic CO_2 reduction, it can not only reduce the harm of the greenhouse effect, but also provide hydrocarbon fuels and alleviate energy shortage problem. In recent years, as a new kind of photocatalyst carrier materials, graphene is caught the attention of more and more people. The research progress on photocatalytic CO_2 reduction over composites based on graphene in recent years was reviewed in this paper, and the focus of future research prospects was made.
引文
[1] 彭辉,吴志红,张建林,等. 基于能带匹配理论设计CO2光催化还原催化剂的研究进展[J]. 化工进展,2014,11(33): 3 007-3 012Peng Hui, Wu Zhihong, Zhang Jianlin, et al. Progress in designing CO2 photocatalyst based on energy band match theory[J].Chemical Industry and Engineering Progress, 2014, 11(33): 3 007-3 012(in Chinese)
    [2] 蓝奔月,史海峰. 光催化CO2转化为碳氢燃料体系的综述[J]. 物理化学学报,2014,30(22): 2 177-2 196Lan Benyue, Shi Haifeng. Review of systems for photocatalytic conversion of CO2 to hydrocarbon fuels[J]. Acta Physico-Chimica Sinica, 2014, 30(22): 2 177-2 196(in Chinese)
    [3] Halmann M.Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells[J]. Nature, 1978, 275(5 676): 115-116
    [4] 李娜.石墨烯基半导体纳米复合材料的制备及其在光催化还原CO2中的应用[D]. 太原: 中北大学,2015Li Na. Preparation of graphene based semiconductor nanocomposites for photocatalytic reduction of CO2 [D]. Taiyuan: North University of China, 2015(in Chinese)
    [5] Chen X, Zhou Y, Liu Q, et al. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3 372-3 377
    [6] Li X, Chen J, Li H, et al. Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation[J]. Journal of Natural Gas Chemistry, 2011, 20(4): 413-417
    [7] Liu Y, Huang B, Dai Y, et al. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst[J]. Catalysis Communications, 2009, 11(3): 210-213
    [8] 陈小康.石墨烯基复合材料用于CO2光催化还原的第一性原理研究[D].哈尔滨:哈尔滨工业大学,2013Chen Xiaokang. A first-principles study of graphene-based composite materials in photocatalytic reduction of CO2[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese)
    [9] Wang W, Serp P, Kalck P, et al. Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications[J]. Materials Research Bulletin, 2008, 43: 958-967
    [10] Wang W, Serp P, Kalck P, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method[J]. Journal of Molecular Catalysis A Chemical, 2005, 235: 194-199
    [11] Wang W, Serp P, Kalck P, et al. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method[J]. Applied Catalysis B: Environmental, 2005, 56: 305-312
    [12] Ou Y, Lin J, Fang S, et al. MWNT-TiO2: Ni composite catalyst: A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination[J]. Chemical Physics Letters, 2006, 429: 199-203
    [13] Oh W C, Ko W B. Characterization and photonic properties for the Pt-fullerene/TiO2 composites derived from titanium (IV) n-butoxide and C60[J]. Journal of Industrial and Engineering Chemistry, 2009, 15: 791-797
    [14] Krishna V, Noguchi N, Koopman B, et al. Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes[J]. Journal of Colloid and Interface Science, 2006, 304: 166-171
    [15] Mu S, Long Y, Kang S, et al. Surface modification of TiO2 nanoparticles with a C60 derivative and enhanced photocatalytic activity for the reduction of aqueous Cr(VI) ions[J]. Catalysis Communications, 2010, 11: 741-744
    [16] 李长南,陈佩,孙毅男,等. 石墨烯基材料的制备及应用研究进展[J]. 淮北师范大学学报:自然科学版,2015, 36(3): 53-62Li Changnan, Chen Pei, Sun Yinan, et al. Research progress on the preparation and application of composite materials based on grapheme[J]. Journal of Huaibei Normal University:Natural Science, 2015, 36(3): 53-62(in Chinese)
    [17] Wang W, Yu J, Xiang Q, et al. Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air[J]. Applied Catalysis B: Environmental, 2012, (119/120): 109-116
    [18] Yoo D, Cuong T, Luan V, et al. Photocatalytic performance of a Ag/ZnO/CCG multidimensional heterostructure prepared by a solution-based method[J]. The Journal of Physical Chemistry C, 2012, 116: 7 180-7 184
    [19] Ren Z, Kim E, Pattinson S W, et al. Hybridizing photoactive zeolites with graphene: A powerful strategy towards superior photocatalytic properties[J]. Chemical Science, 2012, 3: 209-216
    [20] Chen J, Shi J, Wang X, et al. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts[J]. Chinese Journal of Catalysis, 2013, 34(4): 621-640
    [21] 牛英华. 石墨烯负载TiO2和Cu2O催化剂的制备及CO2资源化中的应用[D]. 哈尔滨:哈尔滨工业大学,2012Niu Yinghua. Synthesis of TiO2/Cu2O-graphene catalysts and their application in the resources of carbon dioxide[D]. Harbin: Harbin Institute of Technology, 2012(in Chinese)
    [22] Tan L, Ong W, Chai S, et al. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide[J]. Nanoscale Research Letters, 2013, 8: 465-474
    [23] 李娜,张立新,黄云杰,等. 还原氧化石墨烯-TiO2纳米管复合光催化剂的制备及其对CO2的光催化还原性能[J]. 化工环保,2015,35(2): 199-203Li Na, Zhang Lixin, Huang Yunjie, et al. Preparation of reduced graphene oxide-TiO2 nanotube photocatalyst and its photocatalytic activity on reduction of CO2[J]. Environmental Protection of Chemical Industry, 2015, 35(2): 199-203(in Chinese)
    [24] Tu W, Zhou Y, Liu Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-Promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J]. Adv Funct Mater, 2013, 23(14): 1 743-1 749
    [25] Tan L, Ong W, Chai S, et al. Photocatalytic reduction of CO2 with H2O over graphene oxidesupported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies[J]. Chemical Engineering Journal, 2017, 308: 248-255
    [26] Liu C, Han X, Xie S, et al. Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes[J]. Chemistry-An Asian Journal, 2013, 8: 282-289
    [27] Du Y, Feng Q, Chen C, et al. Photocatalytic and dye-sensitized solar cell performances of {010}-faceted and [111]-faceted anatase TiO2 nanocrystals synthesized from tetratitanate nanoribbons[J]. ACS Applied Materials & Interfaces, 2014, 6: 16 007-16 019
    [28] Xiong Z, Lou Y, Zhao Y, et al. Synthesis, characterization and enhanced photocatalytic CO2 reduction activity of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets[J]. Physical Chemistry Chemical Physics, 2016, 18: 13 186-13 196
    [29] Li X, Wang Q, Zhao Y, et al. Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites[J]. Journal of Colloid and Interface Science, 2013, 411: 69-75
    [30] Zhang L, Li N, Jiu H, et al. ZnO-Reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2[J]. Ceramics International, 2015, 41(5): 6 256-6 262
    [31] Gusain R, Kumar P, Sharma P O, et al. Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation[J]. Applied Catalysis B: Environmental, 2016, 181: 352-362
    [32] An X, Li K, Tang J. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2[J]. Chem Sus Chem, 2014, 7: 1 086-1 093
    [33] Wang A, Li X, Zhao Y, et al. Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performance[J]. Powder Technology, 2014, 261(7): 42-48
    [34] Yu J, Jin J, Cheng B, et al. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel[J]. Journal of Materials Chemistry A, 2014, 2(10): 3 407-3 416
    [35] Wang P, Bai Y, Luo P, et al. Graphene-WO3 nanobelt composite: Elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels[J]. Catalysis Communications, 2013, 38(110): 82-85
    [36] Liu L, Jin F. Hybrid ZnO nanorod arrays@graphene through a facile room-temperature bipolar solution route towards advanced CO2 photocatalytic reduction properties[J]. Chemical Engineering Journal, 2017, 43: 860-865
    [37] Kumar P, Mungse P H, Cordier S, et al. Hexamolybdenum clusters supported on graphene oxide: Visible-light induced photocatalytic reduction of carbon dioxide into methanol[J]. Carbon, 2015, 94: 91-100
    [38] Liu H, Zhang H, Shen P, et al. Synergistic effects in nanoengineered HNb3O8/graphene hybrids with improved photocatalytic conversion ability of CO2 into renewable fuels[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(1): 254-264
    [39] Jain S L, Kumar P, Labhsetwar N, et al. Visible light assisted photocatalytic reduction of CO2 using a graphene oxide supported heteroleptic ruthenium complex[J]. Green Chemistry, 2015, 17(3): 1 605-1 609
    [40] Shown I, Hsu H C, Chang Y, et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by cu-nanoparticle decorated graphene oxide[J]. Nano Letters, 2014, 14(11): 6 097-6 103
    [41] Piao M, Liu N, Wang Y, et al. Efficiently converting CO2 into C2H4 using a porphyrin-graphene composite photocatalyst[J]. Australian Journal of Chemistry, 2016, 69(1): 27-32
    [42] Xu Y, Yang M, Chen B, et al. A CsPbBr3 perovskite quantum dotgraphene oxide composite for photocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139: 5 660-5 663
    [43] Zhang W, Li Y, Zhang X, et al. Facile synthesis of highly active reduced graphene oxide-CuI catalyst through a simple combustion method for photocatalytic reduction of CO2 to methanol[J]. Journal of Solid State Chemistry, 2017, 253: 47-51
    [44] Liang Y, Vijayan B K, Gray K A, et al. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production[J]. Nano Letters, 2011, 11(7): 2 865-2 870
    [45] Xing M, Shen F, Qiu B, et al. Highly-Dispersed boron-doped graphene nanosheets loaded with TiO2 NPs for enhancing CO2 photoreduction[J]. Scientific Reports, 2014, 4: 6 341-6 347
    [46] Lin L, Nie Y, Shalinee K, et al. N-Doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species[J]. Chemical Engineering Journal, 2017, 316: 449-460
    [47] 王金双,秦川丽,王虹涧,等. 氮掺杂石墨烯与g-C3N4二维异质体对纳米Fe2O3光催化剂的复合改性[J]. 高等学校化学学报,2017, 38(2): 246-251Wang Jinshuang, Qin Chuanli, Wang Hongjian, et al. Modification of nano-sized Fe2O3 photocatalystswith N-doped graphene and g-C3N4[J]. Chemical Journal of Chinese Universities, 2017, 38(2): 246-251(in Chinese)
    [48] Kumar P, Mungse P H, Khatri P O, et al. Nitrogen-doped graphene-supported copper complex: A novel photocatalyst for CO2 reduction under visible light irradiation[J]. RSC Advances, 2015, 5(68): 54 929-54 935
    [49] Liang Y, Vijayan B K, Lyandres O, et al. Effect of dimensionality on the photocatalytic behavior of carbon-titania nanosheet composites: Charge transfer at nanomaterial interfaces[J]. The Journal of Physical Chemistry Letters, 2012, 3(13): 1 760-1 765
    [50] Ong W, Tan L, Chai S, et al. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane[J]. Chemical Communications, 2015, 51(5): 858-861
    [51] Low J, Yu J, Ho W. Graphene-Based photocatalysts for CO2 reduction to solar fuel[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4 244-4 251
    [52] Zhang Q, Li Y, Ackerman E A, et al. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 for fuels [J]. Applied Catalysis A: General,2011, 400(1/2): 195-202
    [53] Baeissa E S. Green synthesis of methanol by photocatalytic reduction of CO2 under visible light using a graphene and tourmaline co-doped titania nanocomposites[J]. Ceramics International, 2014, 40(8): 12 431-12 438
    [54] Tan L, Ong W, Chai S, et al. Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane[J]. Applied Catalysis B: Environmental, 2015, (166/167): 251-259
    [55] Lv X, Fu W, Hu C, et al. Photocatalytic reduction of CO2 with H2O over a graphene-modified NiOx-Ta2O5 composite photocatalyst: Coupling yields of methanol and hydrogen[J]. RSC Advances, 2013, 3(6): 1 753-1 757
    [56] Cui S, Sun X, Liu J. Photo-Reduction of CO2 using a rhenium complex covalently supported on a graphene/TiO2 composite[J]. Chemsuschem, 2016, 9: 1-7
    [57] Pawan K, Chetan J, Alexandre B, et al. Core-Shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light[J]. Applied Catalysis B: Environmental, 2017, 205: 654-665
    [58] Benedrtti J E, Bernardo D R, Morais A, et al. Synthesis and characterization of a quaternary nanocomposite based on TiO2/CdS/rGO/Pt and its application in the photoreduction of CO2 to methane under visible light[J]. RSC Advances, 2015, 5(43): 33 914-33 922
    [59] Machado B F, Serp P. Graphene-Based materials for catalysis[J]. Catalysis Science & Technology, 2012, 2(1): 54-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700