高通量筛选技术在菌种进化中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-throughput screening technology in strain evolution
  • 作者:杨祖明 ; 王颖 ; 姚明东 ; 肖文海
  • 英文作者:YANG Zuming;WANG Ying;YAO Mingdong;XIAO Wenhai;Key Laboratory of Systems Bioengineering(Ministry of Education) ,Tianjin University;SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering;
  • 关键词:菌种进化工程 ; 绿色生物制造 ; 高通量筛选 ; 进化文库
  • 英文关键词:strain evolution engineering;;green biomanufacture;;high-throughput screening;;evolutionary library
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:天津大学系统生物工程教育部重点实验室;天津化学化工协同创新中心合成生物学平台;
  • 出版日期:2019-05-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.332
  • 基金:国家自然科学基金青年基金项目(31600052);; 天津市创新平台与人才项目(16PTSYJC00050和16PTGCCX00140)
  • 语种:中文;
  • 页:HGJZ201905039
  • 页数:11
  • CN:05
  • ISSN:11-1954/TQ
  • 分类号:343-353
摘要
菌种进化工程是绿色生物制造的重要策略,利用高效的高通量筛选方法和技术可以快速地获得理想的实用菌株。针对菌种进化工程中的高通量筛选方法,本文重点综述了基于颜色或荧光、基于细胞生长、基于生物传感器以及基于液滴微流体平台等4个方面的高通量筛选技术的重要进展,同时也介绍了各种高通量筛选技术的应用范围和特点,为研究人员从不同进化文库中获得生理特性或者代谢能力显著提高的目标菌株提供了理论指导,极大地提高进化文库的筛选效率,降低了菌株筛选的时间和成本。最后展望了人工智能、合成生物学以及生物信息学的发展对高通量筛选技术的重要影响,以期提高高通量筛选技术的精度、效率和应用范围,进而加速菌种进化过程和工业化进程。
        Strain evolution engineering is an important strategy for green bio-manufacturing. Highthroughput screening methods and techniques can be used to quickly obtain ideal strains. In view of the high-throughput screening methods in strain evolution engineering, this paper focuses on the important advances in high-throughput screening techniques based on color or fluorescence, cell growth, biosensor,and droplet microfluidic platforms. At the same time, the application range and characteristics of various high-throughput screening technologies were introduced, providing theoretical guidance for researchers to obtain ideal strain having physiological or metabolic capacity significantly improved from different evolutionary libraries, so the screening efficiency can be greatly improved and the time and cost can be reduced. Finally, to the future studies shall focus on the important influence of the development of artificial intelligence, synthetic biology and bioinformatics on high-throughput screening technology, in order to improve the accuracy, efficiency and application range of high-throughput screening technology,and accelerate the evolution process and industrialization process of strains.
引文
[1]FERREIRO A,CROOK N,GASPARRINI A J,et al.Multiscale evolutionary dynamics of host-associated microbiomes[J].Cell,2018,172(6):1216-1227.
    [2]WOOLSTON B M,EDGAR S,STEPHANOPOULOS G.Metabolic engineering:past and future[J].Annual Review of Chemical and Biomolecular Engineering,2013,4:259-288.
    [3]TURANLI-YILDIZ B,BENBADIS L,ALKIM C,et al.In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization[J].Journal of Bioscience and Bioengineering,2017,124(3):309-318.
    [4]ZENG W Y,TANG Y Q,GOU M,et al.Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability[J].Applied Microbiology&Biotechnology,2017,101(4):1753-1767.
    [5]SHEPELIN D,HANSEN A S L,LENNEN R,et al.Selecting the best:evolutionary engineering of chemical production in microbes[J].Genes,2018,9(5):249.
    [6]DUARTE J M,BARBIER I,SCHAERLI Y.Bacterial microcolonies in gel beads for high-throughput screening of libraries in synthetic biology[J].ACS Synthetic Biology,2017,6(11):1988-1995.
    [7]LIU X,PAINTER R,ENESA K,et al.High-throughput screening of antibiotic-resistant bacteria in picodroplets[J].Lab on a Chip,2016,16(9):1636-1643.
    [8]TERASHIMA M,FREEMAN E S,JINKERSON R E,et al.Afluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid C hlamydomonas mutants[J].The Plant Journal,2015,81(1):147-159.
    [9]SJOSTROM S L,BAI Y,HUANG M,et al.High-throughput screening for industrial enzyme production hosts by droplet microfluidics[J].Lab on a Chip,2014,14(4):806-813.
    [10]ZHANG X,ZHANG X,XU G,et al.Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve lserine yield in Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology,2018,102(14):5939-5951.
    [11]KIM H S,HSU S C,HAN S I,et al.High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library[J].Plant Direct,2017,1(3):e00011.
    [12]WANG Y,LI Q,ZHENG P,et al.Evolving the L-lysine highproducing strain of Escherichia coli using a newly developed highthroughput screening method[J].Journal of Industrial Microbiology&Biotechnology,2016,43(9):1227-1235.
    [13]LIU Y N,LI Q,ZHENG P,et al.Developing a high-throughput screening method for threonine overproduction based on an artificial promoter[J].Microbial Cell Factories,2015,14(1):121.
    [14]ALPER H,MIYAOKU K,STEPHANOPOULOS G.Construction of lycopene-overproducing E.coli strains by combining systematic and combinatorial gene knockout targets[J].Nature Biotechnology,2005,23(5):612.
    [15]LI J,SHEN J,SUN Z,et al.Discovery of several novel targets that enhanceβ-carotene production in Saccharomyces cerevisiae[J].Frontiers in Microbiology,2017,8:1116.
    [16]ZHOU P,XIE W,LI A,et al.Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae[J].Enzyme and Microbial Technology,2017,100:28-36.
    [17]LIU W,JIANG R.Combinatorial and high-throughput screening approaches for strain engineering[J].Applied Microbiology and Biotechnology,2015,99(5):2093-2104.
    [18]DIETRICH J A,MCKEE A E,KEASLING J D.High-throughput metabolic engineering:advances in small-molecule screening and selection[J].Annual Review of Biochemistry,2010,79:563-590.
    [19]SCHALLMEY M,FRUNZKE J,EGGELING L,et al.Looking for the pick of the bunch:high-throughput screening of producing microorganisms with biosensors[J].Current Opinion in Biotechnology,2014,26(26C):148-154.
    [20]UKIBE K,KATSURAGI T,TANI Y,et al.Efficient screening for astaxanthin-overproducing mutants of the yeast Xanthophyllomyces dendrorhous by flow cytometry[J].FEMS Microbiology Letters,2008,286(2):241-248.
    [21]LEE J H,LEE S H,YIM S S,et al.Quantified high-throughput screening of Escherichia coli producing poly(3-hydroxybutyrate)based on FACS[J].Applied Biochemistry and Biotechnology,2013,170(7):1767-1779.
    [22]DELOACHE W C,RUSS Z N,NARCROSS L,et al.An enzymecoupled biosensor enables(S)-reticuline production in yeast from glucose[J].Nature Chemical Biology,2015,11(7):465.
    [23]HENNING H,LEGGEWIE C,POHL M,et al.Identification of novel benzoylformate decarboxylases by growth selection[J].Applied and Environmental Microbiology,2006,72(12):7510-7517.
    [24]PFLEGER B F,PITERA D J,SMOLKE C D,et al.Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J].Nature Biotechnology,2006,24(8):1027.
    [25]BOERSMA Y L,DR?GE M J,VAN DER SLOOT A M,et al.A novel genetic selection system for improved enantioselectivity of Bacillus subtilis lipase A[J].Chem.Bio.Chem.,2008,9(7):1110-1115.
    [26]BOLES E,OREB M.A growth-based screening system for hexose transporters in yeast[M]//Glucose Transport.Springer,2018:123-135.
    [27]MICHENER J K,THODEY K,LIANG J C,et al.Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways[J].Metabolic Engineering,2012,14(3):212-222.
    [28]LATCHMAN D S.Transcription factors:an overview[J].The International Journal of Biochemistry&Cell Biology,1997,29(12):1305-1312.
    [29]BINDER S,SCHENDZIELORZ G,ST BLER N,et al.A highthroughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level[J].Genome Biology,2012,13(5):R40.
    [30]MAHR R,G?TGENS C,G?TGENS J,et al.Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum[J].Metabolic Engineering,2015,32:184-194.
    [31]WANG M,LI S,ZHAO H.Design and engineering of intracellularmetabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae[J].Biotechnology and Bioengineering,2016,113(1):206-215.
    [32]CHOU H H,KEASLING J D.Programming adaptive control to evolve increased metabolite production[J].Nature Communications,2013,4:2595.
    [33]DIETRICH J A,SHIS D L,ALIKHANI A,et al.Transcription factorbased screens and synthetic selections for microbial small-molecule biosynthesis[J].ACS Synthetic Biology,2012,2(1):47-58.
    [34]RAMAN S,ROGERS J K,TAYLOR N D,et al.Evolution-guided optimization of biosynthetic pathways[J].Proceedings of the National Academy of Sciences,2014,111(50):17803-17808.
    [35]SIEDLER S,SCHENDZIELORZ G,BINDER S,et al.Sox R as a singlecell biosensor for NADPH-consuming enzymes in Escherichia coli[J].ACS Synthetic Biology,2013,3(1):41-47.
    [36]SIERRO N,MAKITA Y,DE HOON M,et al.DBTBS:a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information[J].Nucleic Acids Research,2007,36(suppl1):D93-D96.
    [37]GAMA-CASTRO S,JIM NEZ-JACINTO V,PERALTA-GIL M,et al.RegulonDB(version 6.0):gene regulation model of Escherichia coli K-12 beyond transcription,active(experimental)annotated promoters and textpresso navigation[J].Nucleic Acids Research,2008,36(suppl1):D120-D124.
    [38]MATYS V,KEL-MARGOULIS O V,FRICKE E,et al.TRANSFAC?and its module TRANSCompel?:transcriptional gene regulation in eukaryotes[J].Nucleic Acids Research,2006,34(s1):D108-D110.
    [39]KOLCHANOV N A,IGNATIEVA E V,ANANKO E A,et al.Transcription regulatory regions database(TRRD):its status in 2002[J].Nucleic Acids Research,2002,30(1):312-317.
    [40]CIPRIANO M J,NOVICHKOV P N,KAZAKOV A E,et al.RegTransBase--a database of regulatory sequences and interactions based on literature:a resource for investigating transcriptional regulation in prokaryotes[J].BMC Genomics,2013,14(1):213.
    [41]FREI C S,WANG Z,QIAN S,et al.Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone[J].Protein Science,2016,25(4):804-814.
    [42]TANG S-Y,QIAN S,AKINTERINWA O,et al.Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter[J].Journal of the American Chemical Society,2013,135(27):10099-10103.
    [43]TANG S Y,CIRINO P C.Design and application of a mevalonateresponsive regulatory protein[J].Angewandte Chemie,2011,123(5):1116-1118.
    [44]TANG S Y,FAZELINIA H,CIRINO P C.AraC regulatory protein mutants with altered effector specificity[J].Journal of the American Chemical Society,2008,130(15):5267-5271.
    [45]CHEN W,ZHANG S,JIANG P,et al.Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis[J].Metabolic Engineering,2015,30:149-155.
    [46]LI S,SI T,WANG M,et al.Development of a synthetic malonyl-CoAsensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening[J].ACS Synthetic Biology,2015,4(12):1308-1315.
    [47]SIEDLER S,STAHLHUT S G,MALLA S,et al.Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli[J].Metabolic Engineering,2014,21:2-8.
    [48]BASTET L,TURCOTTE P,WADE J T,et al.Maestro of regulation:riboswitches orchestrate gene expression at the levels of translation,transcription and mRNA decay[J].RNA Biology,2018,15(6):679-682.
    [49]ECKDAHL T T,CAMPBELL A M,HEYER L J,et al.Programmed evolution for optimization of orthogonal metabolic output in bacteria[J].PLoS One,2015,10(2):e0118322.
    [50]DIXON N,DUNCAN J N,GEERLINGS T,et al.Reengineering orthogonally selective riboswitches[J].Proceedings of the National Academy of Sciences,2010,107(7):2830-2835.
    [51]LEE S W,OH M K.A synthetic suicide riboswitch for the highthroughput screening of metabolite production in Saccharomyces cerevisiae[J].Metabolic Engineering,2015,28:143-150.
    [52]CAI Y,XIA M,DONG H,et al.Engineering a vitamin B12 highthroughput screening system by riboswitch sensor in Sinorhizobium meliloti[J].BMC Biotechnology,2018,18(1):27.
    [53]SU Y,HICKEY S F,KEYSER S G,et al.In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-L-homocysteine(SAH)[J].Journal of the American Chemical Society,2016,138(22):7040-7047.
    [54]WANG J,GAO D,YU X,et al.Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device[J].Applied Microbiology and Biotechnology,2015,99(20):8527-8536.
    [55]TRAUSCH J J,CERES P,REYES F E,et al.The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer[J].Structure,2011,19(10):1413-1423.
    [56]WACHSMUTH M,FINDEI S,WEISSHEIMER N,et al.De novo design of a synthetic riboswitch that regulates transcription termination[J].Nucleic Acids Research,2012,41(4):2541-2551.
    [57]TOPP S,REYNOSO C M,SEELIGER J C,et al.Synthetic riboswitches that induce gene expression in diverse bacterial species[J].Applied and Environmental Microbiology,2010,76(23):7881-7884.
    [58]ESPAH BORUJENI A,MISHLER D M,WANG J,et al.Automated physics-based design of synthetic riboswitches from diverse RNAaptamers[J].Nucleic Acids Research,2015,44(1):1-13.
    [59]PEROZA E A,EWALD J C,PARAKKAL G,et al.A genetically encoded F?rster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics[J].Analytical Biochemistry,2015,474:1-7.
    [60]MOHSIN M,AHMAD A.Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells[J].Biosensors and Bioelectronics,2014,59:358-364.
    [61]MOHSIN M,ABDIN M,NISCHAL L,et al.Genetically encoded FRET-based nanosensor for in vivo measurement of leucine[J].Biosensors and Bioelectronics,2013,50:72-77.
    [62]BHATT R,CHUDAEV M,MANDECKI W,et al.Engineered EF-Tu and tRNA-based FRET screening assay to find inhibitors of protein synthesis in bacteria[J].Assay and Drug Development Technologies,2018,16(4):212-221.
    [63]MIYAMOTO A,SUGIURA K,MIKOSHIBA K.Development of a convenient and supersensitive high-throughput screening system for genetically encoded fluorescent probes of small molecules using a confocal microscope[J].Cell Calcium,2017,61:1-9.
    [64]GUERRERO J L,O’MALLEY M A,DAUGHERTY P S.Intracellular FRET-based screen for redesigning the specificity of secreted proteases[J].ACS Chemical Biology,2016,11(4):961-970.
    [65]BEHJOUSIAR A,KONTORAVDI C,POLIZZI K M.In situ monitoring of intracellular glucose and glutamine in CHO cell culture[J].PLoSOne,2012,7(4):e34512.
    [66]WANG J,WEI J,SU S,et al.Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots[J].New Journal of Chemistry,2015,39(1):501-507.
    [67]NGUYEN T-T T,TAWFIK S M,ZAYAKHUU G,et al.Highly selective and sensitive optosensing of glutathione based on fluorescence resonance energy transfer of upconversion nanoparticles coated with a Rhodamine B derivative[J].Arabian Journal of Chemistry,2018,http://doi.org/10.1016/j.arabjc.2018.06.019.
    [68]DING Y,LI J,ENTERINA J R,et al.Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange[J].Nature Methods,2015,12(3):195.
    [69]SZITA N,POLIZZI K,JACCARD N,et al.Microfluidic approaches for systems and synthetic biology[J].Current Opinion in Biotechnology,2010,21(4):517-523.
    [70]AGRESTI J J,ANTIPOV E,ABATE A R,et al.Ultrahigh-throughput screening in drop-based microfluidics for directed evolution[J].Proceedings of the National Academy of Sciences,2010,107(9):4004-4009.
    [71]MA F,CHUNG M T,YAO Y,et al.Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform[J].Nature communications,2018,9(1):1030.
    [72]HUANG M,BAI Y,SJOSTROM S L,et al.Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast[J].Proceedings of the National Academy of Sciences,2015,112(34):E4689-E4696.
    [73]WANG B L,GHADERI A,ZHOU H,et al.Microfluidic highthroughput culturing of single cells for selection based on extracellular metabolite production or consumption[J].Nature Biotechnology,2014,32(5):473.
    [74]MACAULAY I C,PONTING C P,VOET T.Single-cell multiomics:multiple measurements from single cells[J].Trends in Genetics,2017,33(2):155-168.
    [75]ABATE A R,HUNG T,SPERLING R A,et al.DNA sequence analysis with droplet-based microfluidics[J].Lab on a Chip,2013,13(24):4864-4869.
    [76]TREUTLEIN B,BROWNFIELD D G,WU A R,et al.Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq[J].Nature,2014,509(7500):371.
    [77]MOON H S,JE K,MIN J W,et al.Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing[J].Lab on a Chip,2018,18(5):775-784.
    [78]VALIHRACH L,ANDROVIC P,KUBISTA M.Platforms for singlecell collection and analysis[J].International Journal of Molecular Sciences,2018,19(3):807.
    [79]WANG J,SONG Y.Single cell sequencing:a distinct new field[J].Clinical and Translational Medicine,2017,6(1):10.
    [80]FENG Y,ZHANG Y,YING C,et al.Nanopore-based fourthgeneration DNA sequencing technology[J].Genomics,Proteomics&Bioinformatics,2015,13(1):4-16.
    [81]SCHREIBER J,WESCOE Z L,ABU-SHUMAYS R,et al.Error rates for nanopore discrimination among cytosine,methylcytosine,and hydroxymethylcytosine along individual DNA strands[J].Proceedings of the National Academy of Sciences,2013,201310615.
    [82]GARALDE D R,SNELL E A,JACHIMOWICZ D,et al.Highly parallel direct RNA sequencing on an array of nanopores[J].Nature Methods,2018,15(3):201.
    [83]VILFAN I D,TSAI Y C,CLARK T A,et al.Analysis of RNA base modification and structural rearrangement by single-molecule realtime detection of reverse transcription[J].Journal of Nanobiotechnology,2013,11(1):8.
    [84]ROSEN C B,RODRIGUEZ-LARREA D,BAYLEY H.Singlemolecule site-specific detection of protein phosphorylation with a nanopore[J].Nature Biotechnology,2014,32(2):179.
    [85]XIE Z X,LI B Z,MITCHELL L A,et al.“Perfect”designer chromosome V and behavior of a ring derivative[J].Science,2017,355(6329):eaaf4704.
    [86]WU Y,LI B-Z,ZHAO M,et al.Bug mapping and fitness testing of chemically synthesized chromosome X[J].Science,2017,355(6329):eaaf4706.
    [87]JIA B,WU Y,LI B-Z,et al.Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J].Nature Communications,2018,9(1):1933.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700