用户名: 密码: 验证码:
二氧化碳地质封存的环境风险评价方法研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:REVIEW OF ENVIRONMENTAL RISK ASSESSMENT METHODS FOR CARBON DIOXIDE GEOLOGICAL STORAGE
  • 作者:李琦 ; 蔡博峰 ; 陈帆 ; 刘桂臻 ; 刘兰翠
  • 英文作者:LI Qi;CAI Bo-feng;CHEN Fan;LIU Gui-zhen;LIU Lan-cui;State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics (IRSM), Chinese Academy of Sciences;University of Chinese Academy of Sciences;Center for Climate Change and Environmental Policy, Chinese Academy for Environmental Planning, Ministry of Ecology and Environment of People's Republic of China;Appraisal Center for Environment &Engineering, Ministry of Ecology and Environment of People's Republic of China;Business School, Beijing Normal University;
  • 关键词:二氧化碳 ; 地质封存 ; 环境风险 ; 风险评价
  • 英文关键词:carbon dioxide;;geological storage;;environmental risk;;risk assessment
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;中国科学院大学;生态环境部环境规划院气候变化与环境政策研究中心;生态环境部环境工程评估中心;北京师范大学经济与工商管理学院;
  • 出版日期:2019-02-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.248
  • 基金:中国清洁发展机制基金赠款项目“二氧化碳捕集与封存技术的环境影响研究”(2012087)
  • 语种:中文;
  • 页:HJGC201902035
  • 页数:9
  • CN:02
  • ISSN:11-2097/X
  • 分类号:16-24
摘要
二氧化碳捕集、利用与封存是一种可以实现大规模温室气体减排的新兴技术。围绕二氧化碳地质封存过程中的环境风险,系统地梳理了二氧化碳泄漏风险的类别与特点,总结了二氧化碳地质封存的环境风险识别方法,定性与定量风险评价方法等,以期对我国开展二氧化碳地质封存项目的环境风险评价提供借鉴。
        Carbon dioxide capture, utilization and storage(CCUS) is an emerging technology, which can achieve the large-scale greenhouse gas reduction. This paper focuses on the environmental risks of carbon dioxide geological storage(CGS), systematically combs the types and characteristics of carbon dioxide leakage risks, and summarizes the environmental risk identification methods of carbon dioxide geological storage, qualitative and quantitative risk assessment methods, etc., which is of referential value for carrying out environmental risk assessment of CGS projects in China.
引文
[1] 曹丽斌, 赵学涛, 蔡博峰, 等. 二氧化碳捕集、利用与封存环境风险问卷调查研究[J]. 环境工程, 2018, 36(2): 6-9, 26.
    [2] 王永胜. 中国神华煤制油深部咸水层二氧化碳捕集与地质封存项目环境风险后评估研究[J]. 环境工程, 2018, 36(2): 21-26.
    [3] Metz B, Davidson O, Coninck H D, et al. IPCC special report on carbon dioxide capture and storage[R]. Prepared by Working Group Ⅲ of Intergovernmental Panel on Climate Change, New York: IPCC, 2005: 442.
    [4] Pearce J M, Holloway S, Wacker H, et al. Natural occurrences as analogues for the geological disposal of carbon dioxide[J]. Energy Conversion and Management, 1996, 37(6/7/8): 1123-1128.
    [5] Benson S A. Geological Storage of CO2: Analogues and Risk Management[C]//Carbon Sequestration Leadership Forum, 2007.
    [6] 胡丽莎, 张徽, 蔡博峰, 等. 泄漏情景下碳封存项目的风险强度评估方法初探[J]. 环境工程, 2018, 36(2): 37-41.
    [7] 李琦, 刘桂臻, 蔡博峰, 等. 二氧化碳地质封存环境风险评估的空间范围确定方法研究[J]. 环境工程, 2018, 36(2): 27-32.
    [8] Condor J, Unatrakarn D, Wilson M, et al. A comparative analysis of risk assessment methodologies for the geologic storage of carbon dioxide[J]. Energy Procedia, 2011(4): 4036-4043.
    [9] Savage D, Maul P R, Benbow S, et al. A generic FEP database for the assessment of long-term performance and safety of the geological storage of CO2[R]. Quintessa, 2004.
    [10] Yavuz F, Van Tilburg T, David P, et al. Second generation CO2 FEP analysis: CASSIF-carbon storage scenario identification framework[J]. Energy Procedia, 2009, 1(1): 2479-2485.
    [11] Yamaguchi K, Takizawa K, Komaki H, et al. Scenario analysis of hypothetical site conditions for geological CO2 sequestration in Japan[J]. Energy Procedia, 2011(4): 4052-4058.
    [12] Walke R, Metcalfe R, Limer L, et al. Experience of the application of a database of generic features, events and processes (FEPs) targeted at geological storage of CO2[J]. Energy Procedia, 2011(4): 4059-4066.
    [13] 刘桂臻, 李琦, 周冏, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》在胜利油田驱油封存项目上的应用初探[J]. 环境工程, 2018, 36(2): 42-47, 53.
    [14] Dias S, Guen Y L, Poupard O, et al. Risk assessment of MUSTANG project experimental site-Methodological development[J]. Energy Procedia, 2011(4): 4109-4116.
    [15] Farret R, Gombert P, Lahaie F, et al. Design of fault trees as a practical method for risk analysis of CCS: application to the different life stages of deep aquifer storage, combining long-term and short-term issues[J]. Energy Procedia, 2011(4): 4193-4198.
    [16] Sollie O K, Bernstone C, Carpenter M E, et al. An early phase risk and uncertainty assessment method for CO2 geological storage sites[J]. Energy Procedia, 2011(4): 4132-4139.
    [17] Aarnes J E, Selmer-Olsen S, Carpenter M E, et al. Towards guidelines for selection, characterization and qualification of sites and projects for geological storage of CO2[J]. Greenhouse Gas Control Technologies 9, 2009, 1(1): 1735-1742.
    [18] Vendrig M. Risk assessment workshop: the use of SWIFT and QRA in determining risk of leakage from CO2 capture, transportand storage systems[R]. London: IEA Greenhouse Gas R&D Programme and BP, 2004.
    [19] US EPA. Vulnerability Evaluation Framework for Geologic Sequestration of Carbon Dioxide[R]. U.S. Environmental Protection Agency, 2008: 85.
    [20] Bacanskas L, Karimjee A, Ritter K. Toward practical application of the vulnerability evaluation framework for geological sequestration of carbon dioxide[J]. Greenhouse Gas Control Technologies 9, 2009, 1(1): 2565-2572.
    [21] Oldenburg C M. Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk[J]. Environmental Geology, 2008, 54(8): 1687-1694.
    [22] Meyer V, Houdu E, Poupard O, et al. Quantitative risk evaluation related to long term CO2 gas leakage along wells[J]. Energy Procedia, 2009, 1(1): 3595-3602.
    [23] Oldenburg C M, Bryant S L, Nicot J-P. Certification framework based on effective trapping for geologic carbon sequestration[J]. International Journal of Greenhouse Gas Control, 2009, 3(4): 444-457.
    [24] Stauffer P H, Viswanathan H S, Pawar R J, et al. A system model for geologic sequestration of carbon dioxide[J]. Environmental Science & Technology, 2009, 43(3): 565-570.
    [25] Stauffer P H, Pawar R J, Surdam R C, et al. Application of the CO2-PENS risk analysis tool to the Rock Springs Uplift, Wyoming[J]. Energy Procedia, 2011(4): 4084-4091.
    [26] Bielicki J M, Pollak M F, Wilson E J, et al. A methodology for monetizing basin-scale leakage risk and stakeholder impacts[J]. Energy Procedia, 2013, 37: 4665-4672.
    [27] Maul P R, Metcalfe R, Pearce J, et al. Performance assessments for the geological storage of carbon dioxide: learning from the radioactive waste disposal experience[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 444-455.
    [28] Metcalfe R, Maul P, Benbow S, et al. A unified approach to performance assessment (PA) of geological CO2 storage[J]. Energy Procedia, 2009, 1(1): 2503-2510.
    [29] Egan M, Paulley A, Lehman L, et al. Assessing confidence in performance assessments using an evidence support logic methodology: an application of TESLA-9484[J]. 2009.
    [30] Evidence Support Logic: A Guide for TESLA Users[EB/OL]. https://www.quintessa.org/latest-news/evidence-support-logic-a-guide-for-tesla-users.
    [31] Gough C, Shackley S. Towards a multi-criteria methodology for assessment of geological carbon storage options[J]. Climatic Change, 2006, 74(1/3): 141-174.
    [32] Cherkaoui A, Lopez P. CO2 storage risk assessment: feasibility study of the systemic method MOSAR[J]. Safety and Security Engineering Ⅲ, 2009, 108: 173-184.
    [33] Bowden A R, Rigg A. Assessing Reservoir Performance Risk in CO2 Storage Projects[C]//GHGT-7, 2004: 1-9.
    [34] Dodds K, Waston M, Wright I. Evaluation of risk assessment methodologies using the In Salah CO2 storage project as a case history[J]. Energy Procedia, 2011(4): 4162-4169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700