2,6-二甲基-β-环糊精增溶大豆苷元的机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism study of water solubility enhancement of daidzein by 2,6-di-methyl-β-cyclodextrin
  • 作者:于湛 ; 李天乐 ; 韩东旭 ; 刘丽艳 ; 陈庆阳 ; 苏桂田
  • 英文作者:YU Zhan;LI Tianle;HAN Dongxu;LIU Liyan;CHEN Qingyang;SU Guitian;College of Chemistry and Chemical Engineering, Shenyang Normal University;Provincial Key Laboratory for Separation and Analysis of Complex Systems in Liaoning Universities, Shenyang Normal University;
  • 关键词:大豆苷元 ; 2 ; 6-二甲基-β-环糊精 ; 复合物 ; 增溶作用 ; 分子动力学模拟
  • 英文关键词:daidzein;;2,6-di-methyl-β-cyclodextrin;;complex;;solubility enhancement;;molecular dynamics simulation
  • 中文刊名:SYSX
  • 英文刊名:Journal of Shenyang Normal University(Natural Science Edition)
  • 机构:沈阳师范大学化学化工学院;沈阳师范大学复杂体系分离与分析辽宁省高校重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:沈阳师范大学学报(自然科学版)
  • 年:2019
  • 期:v.37;No.125
  • 基金:国家自然科学基金资助项目(21205080);; 辽宁省教育厅高等学校优秀人才支持计划(LJQ2015105)
  • 语种:中文;
  • 页:SYSX201901003
  • 页数:5
  • CN:01
  • ISSN:21-1534/N
  • 分类号:18-22
摘要
采用β-环糊精、γ-环糊精、2-羟丙基-β-环糊精、2,6-二甲基-β-环糊精与6-葡萄糖基-β-环糊精作为增溶剂,研究其对大豆苷元的增溶作用。紫外-可见光谱实验结果表明,上述5种环糊精对大豆苷元都有一定的增溶效应,其中2,6-二甲基-β-环糊精的增溶作用最好。数据分析可知,环糊精是通过与大豆苷元形成的1:1型复合物实现増溶的。随后,采用傅里叶变换红外光谱法、X射线粉末衍射法等手段验证了环糊精与大豆苷元形成的复合物。为了获得可能的复合物结构,采用分子对接技术研究2,6-二甲基-β-环糊精与大豆苷元的复合过程,并对所得到的能量最低的对接结果进行了分子动力学模拟实验,发现大豆苷元的A环与C环复合在2,6-二甲基-β-环糊精空腔处,B环位于环糊精大口处,二者之间存在明显的氢键作用,而且所形成的复合物具有较强的动力学稳定性,在30 ns时间内结构稳定,未发生较大形变。主客体与复合物的RMSD变化很小。
        In this paper, β-cyclodextrin, γ-cyclodextrin, 2-Hydroxypropyl-β-cyclodextrin, 2,6-di-methyl-β-cyclodextrin and 6-glucosyl-β-cyclodextrin are adopted as solubilizers for the research of solubility enhancement of daidzein. The results of UV-Vis spectroscopy show that the five cyclodextrins all have a certain hydrotropic effect on daidzein, and among them, 2,6-dimethyl-β-cyclodextrin has the best hydrotropic effect. The solubility enhancement of daidzein is achieved by forming 1∶1 complexes with cyclodextrins. Subsequently, the complexes formed by di-methyl-β-cyclodextrin and daidzein was verified by means of Fourier transform infrared spectroscopy and X-ray powder diffraction. In order to obtain the plausible complex structure, the technique of molecular docking was used to study the complexation process of 2,6-dimethyl-β-cyclodextrin and daidzein. Molecular dynamics was also applied to the lowest energy docking result. The simulation result indicates the A and C ring of daidzein are complexed in the cavity of 2,6-dimethyl-β-cyclodextrin, and the ring B is located at the large rim of the cyclodextrin. There is a hydrogen bonding interaction between the host and the guest. The formed complex has strong kinetic stability. The structure is stable in 30 ns and no large structural deformation is observed. The RMSD changes of the host, the guest and the complex are small.
引文
[1]JAMBHEKAR S S,BREEN P.Cyclodextrins in pharmaceutical formulationsⅡ:solubilization,binding constant,and complexation efficiency[J].Drug Discovery Today,2016,21(2):363-368.
    [2]CIFUENTES T,CAYUPI J,CELIS-BARROS C,et al.Spectroscopic studies of the interaction of 3-(2-thienyl)-[1,2,3]triazolo[1,5-a]pyridine with 2,6-dimethyl-β-cyclodextrin and ctDNA[J].Organic&Biomolecular Chemistry,2016,14(41):9760-9767.
    [3]PIRAS A M,ZAMBITO Y,BURGALASSI S,et al.A water-soluble,mucoadhesive quaternary ammonium chitosanmethyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone[J].Journal of Materials Science:Materials in Medicine,2018,29(4):42.
    [4]ASHWAQ S,RASEDEE A,ABDUL A B,et al.Characterization,drug release profile and cytotoxicity of DentatinHydroxypropyl-β-Cyclodextrin complex[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2017,87(1):167-178.
    [5]CHOI S G,LEE S E,KANG B S,et al.Thermosensitive and Mucoadhesive Sol-Gel composites of Paclitaxel/Dimethyl-β-Cyclodextrin for buccal delivery[J].Plos One,2014,9(10):e109090.
    [6]TANG P,LI S,WANG L,et al.Inclusion complexes of chlorzoxazone withβ-and hydroxypropyl-β-cyclodextrin:Characterization,dissolution,and cytotoxicity[J].Carbohydrate Polymers,2015,131:297-305.
    [7]TOUQEER A,SANA J,AMEEMA T,et al.Daidzein and its effects on brain[J].Current Medicinal Chemistry,2017,24(4):365-375.
    [8]SUN M Y,YE Y,XIAO L,et al.Daidzein:A review of pharmacological effects[J].African Journal of Traditional,Complementary and Alternative Medicines,2016,13(3):117-132.
    [9]DAS D,SARKAR S,BORDOLOI J,et al.Daidzein,its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2diabetes[J].BioFactors,2018,44(5):407-417.
    [10]LIU Z M,HO S C,WOO J,et al.Randomized controlled trial of whole soy and isoflavone daidzein on menopausal symptoms in equol-producing Chinese postmenopausal women[J].Menopause,2014,21(6):653-660.
    [11]龙友琦,王兰,尚京川,等.木犀草素及其磺丁基醚-β-环糊精包合物在大鼠体内的药代动力学研究[J].药物分析杂志,2018,38(2):282-287.
    [12]HIGUCHI T,CONNORS K A.Phase solubility techniques[J].Adv Anal Chem Instrum,1965,4:117-212.
    [13]范新景,袁超,李嘉琪,等.根皮苷与麦芽糖基-β-环糊精复合物的理化性质研究[J].现代食品科技,2016,32(3):106-112.
    [14]于湛,何妍,马嘉泽,等.光谱法结合分子对接研究环糊精对苏丹红Ⅳ的增溶作用[J].分析试验室,2016,35(3):249-252.
    [15]谢伯泰,马晓明,姚孙贤,等.甲基化-β-环糊精的特性及其在药物中的应用[J].中国新药杂志,2009,18(8):705-709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700