环量控制襟翼系统流动机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Flow Mechanism of Circulation Control Flap System
  • 作者:陈翔 ; 唐俊勇
  • 英文作者:Chen Xiang;Tang Junyong;School of Civil Engineering,Xi'an Technological University;School of Computer Science and Engineering,Xi'an Technological University;
  • 关键词:环量控制 ; 动量系数 ; 流动分离 ; 襟翼系统 ; N-S方程
  • 英文关键词:circulation control;;momentum coefficient;;flow separation;;flap system;;Navier Stokes equations
  • 中文刊名:JXKX
  • 英文刊名:Mechanical Science and Technology for Aerospace Engineering
  • 机构:西安工业大学建筑工程学院;西安工业大学计算机科学与工程学院;
  • 出版日期:2018-05-25 13:05
  • 出版单位:机械科学与技术
  • 年:2018
  • 期:v.37;No.285
  • 语种:中文;
  • 页:JXKX201811025
  • 页数:6
  • CN:11
  • ISSN:61-1114/TH
  • 分类号:165-170
摘要
环量控制襟翼系统作为一种先进的襟翼系统,能够提高飞机起飞着陆性能并减小系统的复杂程度。以一种襟翼偏转角为60°的环量控制襟翼系统作为几何模型,采用Fluent求解定常雷诺平均N-S方程组,研究了不同动量系数时的环量控制襟翼系统的升力特性以及环量控制对流动分离的控制效果。计算结果表明:当攻角为0,动量系数为0.05时,ΔCl=1.7,效费比ΔCl/ΔCμ=31.4;随着动量系数增大,环量控制襟翼系统能够有效控制大偏角襟翼后方的流动分离,并在引射作用下使翼型上表面的流动速度加快,翼型环量增加,从而有效提高翼型的升力系数。
        Circulation control flap system is an advanced flap system,which can improve the takeoff and landing performance and reduce the complexity of the system. A circulation control flap system with a flap deflection angle of 60° is used as geometric model,both the lifting characteristics of the circulation control flap system in different momentum coefficients and the control effect of the circulation control on the flow separation are studied through solving steady Reynolds-averaged Navier Stokes equations with Fluent software. The simulation results show that when the angle of attack is 0 and the momentum coefficient is 0.05,1.7,31.4; With the increase of the momentum coefficient,the circulation control flap system can control the flow separation behind the deflection flap effectively,accelerate the flow velocity on the upper surface of the airfoil under the influence of ejection effect,and increase the circulation of the airfoil,so that the lift coefficient of the airfoil is improved effectively.
引文
[1]张正国.NASA未来先进民用飞机与推进系统设计[J].国际航空,2010,(2):56-59Zhang Z G. Advanced civil aircraft and propulsion system design in NASA[J]. International Aviation,2010,(2):56-59(in Chinese)
    [2] Coanda H. Device for deflecting a stream of elastic fluid projected into an elastic fluid:US,2052869[P]. 1936-09-01
    [3] Wood N J,Nielson J N. Circulation control airfoils-past,present,future[C]//Proceedings of the 23rd Aerospace Sciences Meeting,Aerospace Sciences Meetings. Reno:AIAA,1985
    [4] Englar R J. Circulation control pneumatic aerodynamics:blown force and moment augmentation and modification;Past,present and future[C]//Proceedings of Fluids2000 Conference and Exhibit,Fluid Dynamics and Colocated Conferences. Reston:AIAA,2000
    [5] Englar R J,Smith M J,Kelly S M,et al. Application of circulation control to advanced subsonic transport aircraft,Part I:airfoil development[J]. Journal of Aircraft,1994,31(5):1160-1168
    [6] Liu Y. Numerical simulations of the aerodynamic characteristics of circulation control wing sections[D].Atlanta:Georgia Institute of Technology,2003
    [7] Fielding J,Lawson C,Rui M P,et al. Design,build and flight of the DEMON demonstrator UAV[C]//Proceedings of the 11th AIAA Aviation Technology,Integration, and Operations(ATIO)Conference,Aviation Technology, Integration, and Operations(ATIO)Conferences. Virginia Beach, VA:AIAA,2011
    [8] Rich P,McKinley B,Jones G S. Circulation control in NASA's vehicle systems[C]//Proceedings of the 2004NASA/ONR Circulation Control Workshop, Part 1.Hampton,VA:NASA/Office of Naval Research,2004:1-36
    [9] Englar R J. Overview of circulation control pneumatic aerodynamics:blown force and moment augmentation and modification as applied primarily to fixed-wing aircraft[C]//Proceedings of the 2004 NASA/ONR Circulation Control Workshop,Part 1. Hampton,VA:NASA/Office of Naval Research,2004:37-99
    [10] Joslin R D,Jones G S. Progress in astronautics and aeronautics[M]. Reston:AIAA,2006
    [11] Golden R M,Marshall D D. Design and performance of circulation control flap systems[C]//Proceedings of the48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,Aerospace Sciences Meetings. Orlando, Florida:AIAA,2010
    [12] Burnazzi M,Radespiel R. Design and analysis of a droop nose for coanda flap applications[J]. Journal of Aircraft,2014,51(5):1567-1579
    [13]朱自强,吴宗成.环量控制技术研究[J].航空学报,2016,37(2):411-428Zhu Z Q,Wu Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2):411-428(in Chinese)
    [14]张攀峰,燕波,戴晨峰.合成射流环量控制翼型增升技术[J].中国科学技术科学,2012,42(9):1046-1053Zhang P F,Yan B,Dai C F. Lift enhancement method by synthetic jet circulation control[J]. Science China Technological Sciences,2012,55(9); 2585-2592
    [15]孔博,王福新,周涛.基于环量控制无缝变弯度翼型的气动设计[J].空气动力学学报,2013,31(5):583-586Kong B,Wang F X,Zhou T. The aerodynamic design of seamlessly camber-variable airfoil based on circulation control[J]. Acta Aerodynamica Sinica,2013,31(5):583-586(in Chinese)
    [16]张艳华,张登成,胡孟权,等.环量控制对翼型气动特性的作用机理[J].空军工程大学学报(自然科学版),2015,16(1):10-13Zhang Y H,Zhang D C,Hu M Q,et al. Study on aerodynamic mechanism of circulation control airfoil[J].Journal of Air Force Engineering University(Natural Science Edition),2015,16(1):10-13(in Chinese)
    [17]王海洋.基于环量控制的无人飞行器气动特性研究与飞行试验[D].南京:南京航空航天大学,2014Wang H Y. Research on aerodynamic characteristics and flight test of uav based on circulation control[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014(in Chinese)
    [18]李社新,金晶.非结构网格离心泵全流场数值模拟研究[J].机械科学与技术,2016,35(2):210-215Li D S,Jin J. Numerical simulation of centrifugal pump flow field based on unstructured meshes[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(2):210-215(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700