用户名: 密码: 验证码:
贵州纳朵洞洞穴滴水微量元素时空变化及其环境意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Variation of Trace Elements in Drip Water of Naduo Cave in Guizhou and Its Environmental Significance
  • 作者:李维杰 ; 王建力 ; 王家录 ; 黄定军
  • 英文作者:Li Weijie;Wang Jianli;Wang Jialu;Huang Dingjun;School of Geography Science,Southwest University;Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment,Ministry of Education;School of Resources and Environmental Engineering,Anshun University;
  • 关键词:贵州 ; 纳朵洞 ; 洞穴滴水 ; 微量元素 ; Mg/Ca
  • 英文关键词:Guizhou;;Naduo cave;;cave dripping;;trace element;;Mg/Ca
  • 中文刊名:KJTB
  • 英文刊名:Bulletin of Science and Technology
  • 机构:西南大学地理科学学院;三峡库区生态环境教育部重点实验室;安顺学院资源与环境工程学院;
  • 出版日期:2018-08-31
  • 出版单位:科技通报
  • 年:2018
  • 期:v.34;No.240
  • 基金:贵州省科技合作计划项目(黔科合LH字[2014]7498,黔科合J字LKA[2012]09号,黔科合J字LKA[2012]18号);; 贵州省科技计划院士工作站项目(黔科合平台人才[2016]5602)
  • 语种:中文;
  • 页:KJTB201808004
  • 页数:9
  • CN:08
  • ISSN:33-1079/N
  • 分类号:28-35+42
摘要
在2015年1月-2015年12月期间,本研究团队对贵州纳朵洞3处滴水点和1处池水点进行了为期一个水文年的监测和实验分析,并结合当地的气象资料,分析了各个滴水点的时空变化特征,初步探讨了洞穴滴水对外界气温和降水的响应机制。(1)洞穴滴水类型的不同导致对外界大气降水的响应机制存在差异,D4和D8为常年性滴水,响应较慢,D7为季节性滴水,响应较快。p H和电导率变化趋势大致相似,总体表现出夏季低、冬季高的特点,3处滴水点水中的CO2浓度变化趋势表现出一致性,呈现出夏季浓度高,冬季浓度低的特点,且存在一定的滞后性,滞后期大约为2个月,这与洞穴外界大气温度与降水的季节变化有关。(2)D4、D8、D7滴水点的土壤和岩层厚度逐渐递减,导致水-土-岩反应时间也随着减少,3处滴水点Ca~(2+)、Mg~(2+)、Ba~(2+)、Sr~(2+)的浓度变化也表现出逐级递减的特点,DC池水点由于夏季洞内CO2浓度较高,致使水中p H偏低,继续溶解下部基岩,进而致使水中Ca~(2+)的浓度偏高。(3)滴水点中Ca~(2+)、Mg2、Ba~(2+)、Sr~(2+)的浓度变化特征总体上表现随着降水的增加,浓度逐渐上升,雨季高于旱季的特点。在5月~10月份雨季期间,随着降水量的增加,各个滴水点Mg/Ca比值处于下降阶段,而在11月至次年4月旱季期间,随着降水量的减少,Mg/Ca比值处于增加阶段。
        During the period from January 2015 to December 2015,the research team conducted a hydrological year monitoring and temporal and spatial characteristics of each drip point were analyzed,and the response mechanism of cave drip to external air experimental analysis on three drip points and one water point in Naduo Cave,Guizhou. Based on the local meteorological data,The temperature andprecipitation was discussed.( 1) The drip types of different drip points have different responses to the external precipitation,D4 and D8 are dripping year by year,the response is slow,and D7 is the seasonal drip,the response is fast. The trends of p H and conductivity are similar,. the overall performance characteristics of summer is low and winter is generally high.The trend of CO2 concentration in three drip points shows consistency,high concentration in summer and seasonal variation of atmospheric temperature and precipitation in the cave.( 2) Spatial variation of drip point due to the soil and rock layer thickness of D4,D8,D7 drip points are gradually decreasing,the reaction time of water-soil-rock with reduced. the concentration change trend of three drip points' s Ca~(2+),Mg~(2+),Ba~(2+),Sr~(2+)is basically the same,showing decreased step by step,the high CO2 concentration of the pool water in summer,resulting in low PH,continue to dissolve the lower bedrock,and then the concentration of Ca~(2+)in water is high.( 3) The concentration of Ca~(2+),Mg~(2+),Ba~(2+),Sr~(2+)in the drip-point showed a general increase with the increase of precipitation,and the rainy season was higher than the dry season. During the rainy season from May to October,with the increase of precipitation,the ratio of Mg/Ca in each dripping point was in the descending stage. while During the dry season from November to April,precipitation decreased and Mg/Ca ratio increased.
引文
[1]张美良,朱晓燕等.洞穴滴(流)水的沉积及溶—侵蚀作用——以桂林盘龙洞为例[J].中国岩溶,2007,26(4);326-333.
    [2]Peng Zicheng,Zhang Zhaofeng,Cai Yanjun,et al.The paleoclimaticrecords from the Late Pleistocene stalagmite in Guizhou Qixing Cave[J].Quaternary Sciences,2002,22(3):273-282.
    [3]Qin Jiaming,Lin Yushi,Zhang Meiliang,et al.Highresolution re-cords ofδ13C and their paleoecological significance from stalagmitesformed in Holocene epoch in Guilin[J].Quaternary Sciences,2002,20(4):351-358.
    [4]Tan Ming,Liu Tungsheng,Hou Juzhi,et al.Cyclic rapid warmingon centennial-scale revealed by a 2 650-year stalagmite record of warm season temperature[J].Geophysical Research Letters,2003,30(12):1 617-1 620.
    [5]Wang Y J,Cheng H,Edwards R L,et al.A highresolution abso-lute-dated Late Pleistocenemonsoon record from Hulu Cave[J],China.Science,2001,29(4):2345-2348.
    [6]王新中,班凤梅,潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素*——以北京石花洞为例[J],第四纪研究,2005,25(2);258-264.
    [7]Baker A,Ito E,Smart P L,et al.Elevated and variable values of 13C in speleothems in a British cave system[J].Chem-ical Geology,1997,136:263-270.
    [8]李彬,袁道先,林玉石等.桂林地区降水,洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J].中国科学(D辑),2000,30(1):81-87.
    [9]李彬,袁道先,林玉石等.桂林地区4万年来石笋高分辨率古生态变化记录[J].第四纪研究,2000,20(4):395.
    [10]Baker A,Genty D,Fairchild I J.Hydrological characterization of stalagmite drip waters at Grotte de Villars,Dor-dogne,by the analysis of inorganic species and luminescent organic matter[J].Hydrology and Earth System Sciences.2000,4:439-449.
    [11]Dreybrodt W.Chemical kinetics,speleothem growth and climate[J].Borea,1999,28;347-356.
    [12]Fairchild I J,Borsato A,Tooth A F,et al.Controls on trace el-ement(Sr-Mg)compositions of carbonate cave waters:Impli-cations for speleothem climatic record[J].Chemical Geology,2000,166(3-4):255-269.
    [13]周运超,王世杰.贵州七星洞滴水的水文水化学特征及其意义[J],水文地质工程地质,2006,14(1);52-57.
    [14]衣成城,李廷勇等.芙蓉洞洞穴水离子浓度和元素比值变化特征及其环境意义[J],中国岩溶,2011,30(2);200-208.
    [15]沈蔚,王建力等.贵州纳朵洞洞穴水水文地球化学变化特征及其环境意义[J],环境科学,2015,36(12);4455-4463.
    [16]周福莉,李廷勇等.重庆芙蓉洞洞穴水水文地球化学指标的时空变化[J],水土保持学报,2012,26(3);253-259.
    [17]王新中.洞穴滴水化学过程及其动力学与上覆土壤驱动问题[D].南京:南京农业大学,2005.
    [18]王焰新,孙连发,罗朝辉等.指示娘子关泉群水动力环境的水化学-同位素信息分析[J].水文地质地质,1997,4(3);1-9.
    [19]班凤梅,潘根兴,蔡炳贵等.北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义[J].中国岩溶,2009,2(3);244-248.
    [20]马倩倩.山东半岛九天洞洞穴滴水微量元素季节变化及其气候环境意义研究[D].山东烟台:鲁东大学.2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700