湍流渠道中几何减阻技术及其机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Geometrical Drag Reduction and Mechanism of Turbulent Channel
  • 作者:许桂阳 ; 王春光 ; 龚建良 ; 张晓军 ; 邓哲
  • 英文作者:Xu Gui-yang;Wang Chun-guang;Gong Jian-liang;Zhang Xiao-jun;Deng Zhe;Xi'an Modern Chemistry Research Institute;
  • 关键词:湍流渠道 ; 几何减阻 ; 波浪壁 ; 一阶傅里叶模式
  • 英文关键词:turbulent channel;;geometrical drag reduction;;wave wall;;first mode of Fourier expansions
  • 中文刊名:DDYH
  • 英文刊名:Missiles and Space Vehicles
  • 机构:西安近代化学研究所;
  • 出版日期:2018-10-11 19:54
  • 出版单位:导弹与航天运载技术
  • 年:2019
  • 期:No.368
  • 语种:中文;
  • 页:DDYH201903023
  • 页数:6
  • CN:03
  • ISSN:11-3263/V
  • 分类号:120-125
摘要
为了研究波浪壁面对渠道中湍流流动阻力的影响规律,将任意形状的波浪壁面表达为一阶傅里叶模式,选取流动方向单位长度渠道作为研究对象,对该模型进行单位化处理,推导了渠道减阻系数的计算方法,通过与DNS计算结果对比,验证了本文计算方法具有较好的准确性。通过Fluent流场分析软件计算得到不同的波数和幅值模型的压降损失,获得减阻系数随波数和幅值变化规律。选取不同的几何形状进行计算,并与一阶傅里叶模式下的结果进行对比,除具有内尖角壁面模型外,一阶傅里叶模式均可以进行较好的近似。该规律为建立减阻几何形状提供了一定参考。
        In order to investigate the drag reduction of turbulent flow in a channel, and get its mechanism, the arbitrary geometry wave wall is expressed in first mode of Fourier expansions. Per unit length is selected along the direction of flow as the researching object, and the unit model of the channel is established. The calculating models of drag reduction factor are obtained. The results of some typically conditions got by the methods agree with DNS results very well, which verify the calculation precision of the method.The models with different kinds of amplitudes and wave number α have been calculated by fluent software. Different geometries have been selected to calculate their pressure drop, and compared with the results of first mode of Fourier expansions. The first mode of Fourier expansions can get a good agreement with arbitrary geometry except the geometry with inside sharp corners. The rules will provide some certain references for establishing geometrical drag reduction.
引文
[1]Walsh M J.Drag characteristics of V-groove and transverse curvature riblets in viscous drag reduction[J].AIAA,1980(72):168-184.
    [2]Mohammadi A,Floryan J M.Numerical analysis of laminar-drag-reducing grooves[J].J.Fluids Eng.,2015,137(412):1-12.
    [3]Mohammadi A,Floryan J M.Mechanism of drag generation by surface corrugation[J].J.Phys.Fluids,2012,24(136):1-13.
    [4]Mohammadi A,Floryan J M.Effects of longitudinal grooves on the couette-poiseuille flow[J].Theor.Comput.Fluid Dyn.,2014(28):549-572.
    [5]Mohammadi A,Floryan J M.Groove optimization for drag reduction[J].J.Phys.Fluids,2013(25):1-15.
    [6]Mohammadi A,Floryan J M.Pressure losses in grooved channels[J].J.Fluid Mech.,2013,725(184):23-54.
    [7]Walsh M J,Lindemann A M.Optimization and application of riblets for turbulent drag reduction[J].AIAA,1984(347):85-94.
    [8]Bruse M,et al.Experiments with conventional and with novel adjustable drag-reducing surfaces in near-wall turbulent flows[J].Elsevier,Amsterdam,1993(429):719-738.
    [9]Walsh M J.Riblets in viscous drag reduction in boundary layers[J].AIAA,1990(126):203-261.
    [10]丛茜,封云,任露泉.仿生非光滑沟槽形状对减阻效果的影响[J].水动力学研究与进展,2006,21(2):232-238.Cong Qian,Feng Yun,Ren Luquan.Affecting of riblets shape of non-smooth surface on drag reduction[J].Journal of Hydrodynamics,2006,21(2):232-238.
    [11]Frohnapfel B,Jovanovic J,Delgado A.Experimental investigations of turbulent drag reduction by surface-embedded grooves[J].J.Fluid Mech.,2007,590(23):107-116.
    [12]王树立,史小军,赵书华.沟槽面在湍流减阻中的技术研究及应用进展[J].西南石油大学学报(自然科学版),2008,30(1):146-150.Wang Shuli,Shi Xiaojun,Zhao Shuhua.Research and application progress of grooves surface in the turbulent drag reduction technology[J].Journal of Southwest Petroleum University(Science&Technology Edition),2008,30(1):146-150.
    [13]Bechert D W,et al.Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J].J.Fluid Mech.,1997,90(33):59-87.
    [14]Garcia-Mayoral R,Jimenez J.Drag reduction by riblets[J].J.Fluid Mech.,2011,1412(55):235-245.
    [15]Garcia-Mayoral R,Jimenez J.Hydrodynamic stability and breakdown ofthe viscous regime over riblets[J].J.Fluid Mech.,2011,678(317):156-160.
    [16]Choi H,Moin P,Kim J.Direct numerical simulation of turbulent flow over riblets[J].J.Fluid Mech.,1993,255(88):500-503.
    [17]Goldstein D B,Tuan T C.Secondary flow induced by riblets[J].J.Fluid Mech.,1998,363(65):110-115.
    [18]Haecheon Choi,Parviz Moin,John Kim.Active turbulence control for drag reduction in wall-bounded flows[J].J.Fluid Mech.,1994,262(77):75-110.
    [19]王春光,等.环形通道中湍流减阻技术及其机理研究[J].导弹与航天运载技术,2018(06):30-35.Wang Chunguang,et al.Research on turbulent drag reduction and mechanism of annuli[J].Missiles and Space Vechicles,2018(06):30-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700