光纤复合低压电缆中光纤热致损耗仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of thermal-stain loss of optical fiber in fiber composite low voltage cable
  • 作者:付文成 ; 刘懿莹 ; 葛维春 ; 于鹏浩 ; 伏丽娜 ; 陈玉
  • 英文作者:FU Wencheng;LIU Yiying;GE Weichun;YU Penghao;FU Lina;CHEN Yu;College of Electrical Engineering, Xi'an Jiaotong University;State Grid Liaoning Electric Power Co.Ltd.;Shanghai Electric Cable Research Institute;
  • 关键词:光纤光学 ; 光纤复合低压电缆 ; 热致应变损耗 ; COMSOL仿真 ; 弹光效应
  • 英文关键词:fiber optics;;fiber composite low voltage cable;;thermal-strain loss;;COMSOL simulation;;photoelastic effect
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:西安交通大学电气工程学院;国网辽宁省电力有限公司;上海电缆研究所;
  • 出版日期:2019-03-15
  • 出版单位:量子电子学报
  • 年:2019
  • 期:v.36;No.187
  • 基金:国家重点研发计划,2016YFB0901200~~
  • 语种:中文;
  • 页:LDXU201902019
  • 页数:9
  • CN:02
  • ISSN:34-1163/TN
  • 分类号:122-130
摘要
研究光纤温度与传输特性之间的关系对光纤复合低压电缆(OPLC)的设计及应用非常重要.利用COMSOL多物理场仿真软件建立了二维仿真模型,研究了光纤轴向应力随温度的变化情况,并通过与理论计算相对比验证了模型的合理性。其次,通过理论计算得到了石英光纤的应力弹光系数,并且基于弹光效应仿真分析了涂覆层材料为丙烯酸树脂和聚乙烯两种光纤的瞬态温升特性和热致应变损耗。结果表明,涂覆层材料为丙烯酸树脂的光纤在相同时间内温度上升幅度较小,在相同温度下的损耗也更低,40℃到250℃范围内,其热致应变损耗随温度升高而线性增加,最大值为0.033 dB/km.从瞬态温升和热致应变损耗的角度出发,涂覆层材料为丙烯酸树脂的光纤在OPLC的应用中更具优势。
        Investigation of relationship between the temperature in optical fiber and transmission characteristics is very important for the design and application of fiber composite low voltage cable(OPLC).A two-dimensional simulation model was established using COMSOL multi-physics simulation software to study the change of fiber axial stress with temperature, and the rationality of the model is verified by comparison with theoretical calculation. The stress elastic coefficient of quartz fiber was calculated theoretically and the transient temperature rise characteristics and thermal strain loss of the two kinds of optical fibers,acrylic and polyethylene, were analyzed by simulation based on the photo-elastic effect.The results show that the optical fiber with coating material of acrylic resin has smaller transient temperature rise in same time and lower loss at the same temperature. And its thermal strain loss increases linearly with increasing temperature in the range of 40℃ to 250℃, with a maximum of 0.033 dB/km. From the viewpoint of transient temperature rise and thermal strain loss, the optical fiber with the coating material of acrylic resin is of more advantages in the application of OPLC.
引文
[1] Lu Y G, Li C L, Zhang X P, et al. Determination Of Thermal Residual Strain In Cabled Optical Fiber With High Spatial Resolution By Brillouin Optical Time-Domain Reflectometry[J]. Optics&Lasers in Engineering;2011, 49(9):1111-1117(in Chinese).
    [2] Xie Shuhong, Zhang Jianmin, Li Xinjian, et al. The new power fiber to the home technology based on the optical fiber composite low voltage cable[J]. Telecommunications for Electric Power System(电力系统通信),2012, 33(1):82-86(in Chinese).
    [3] Tu Xinghua, Ni Bin, Li Junbo. Fiber composite low-voltage cable temperature distribution and optical unit transmission characteristics[J]. Chinese Journal of Quantum Electronics(量子电子学报),2017, 34(1):88-93(in Chinese).
    [4] Gunday A, Karlik S E. Optical fiber distributed sensing of temperature, thermal strain and thermo-mechanical force formations on OPGW cables under wind effects[C]. International Conference on Electrical and Electronics Engineering, Bursa, 2013, pp. 462-467.
    [5] Karlik S E, Yilmaz G. Effects of ambient temperature change on polarization mode dispersion and transmission distance of slotted core NZDF ribbons[J]. Journal of Optoelectronics and Advanced Materials, 2014, 16(7):837-841.
    [6] Yu Xianlun, Luo Yingxiang, Song Mingcheng. Influence of temperature field on the solid-core photonic crystal fibers[J]. Chinese Journal of Quantum Electronics(量子电子学报),2007,(06):768-774(in Chinese).
    [7] Wilson A C, Slichter D H, et al. Single-mode optical fiber for high-power, low-loss UV transmission[J]. Optics Express, 2014, 22(16):19783-19793.
    [8] LI Weite, HUANG Baohai, BI Zhongbo. Thermal Stress Analysis and Application(热应力理论分析及应用)[M].Beijing, China Power Press, 2004, 59-68(in Chinese).
    [9] Yablon A D. Optical and mechanical effects of frozen-in stresses and strains in optical fibers[J]. IEEE Journal of Selective Jopics of Quantum Electronics, 2004, 10(2):300-311.
    [10] Lv Xinwei, Wu Junyong, Sun Liyan. Thermal stress birefringence simulation of single mode optic fiber loop[J].Navigation and Control(导航与控制),2015,14(03):94-97(in Chinese).
    [11] Liao Yanbiao. Fiber Optics:Priciples and Applications(光纤光学:原理与应用)[M]. Beijing,Tsinghua University Press, 2010, 75-78(in Chinese).
    [12] Yumashev K V, Zakharova A N, Loiko P A. Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals[J]. Laser Physics, 2016, 26(6):065002.
    [13] Peng Xingling, Zhang Hua, Li Yulong. Thermal stress birefringence simulation of single mode optic fiber loop[J].Acta Optica Sinica(光学学报),2014,34(11):1106004(in Chinese).
    [14] Krupych O, Savaryn V, Skab I, et al. Interferometric measurements of piezooptic coefficients by means of fourpoint bending method[J]. Ukrainian Journal of Physical Optics, 2011, 12(3):150-159.
    [15] Pi Haoyang, Liu Qiong, Ye Qing. Analysis and experimental study of inner stress for metallized fiber Bragg gratings[J]. Chinese Journal of Laser(中国激光),2012, 39(3):0305008(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700