含有绝热压缩空气储能的分布式能源系统供能特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance Analysis of Distributed Energy System With Adiabatic Compressed Air Energy Storage
  • 作者:张华煜 ; 陈上 ; 朱彤 ; 甘中学
  • 英文作者:ZHANG Huayu;CHEN Shang;ZHU Tong;GAN Zhongxue;School of Mechanical Engineering, Tongji University;ENN Group;
  • 关键词:分布式能源 ; 绝热压缩空气储能 ; 冷热电三联供 ; 压缩热返还比 ; 风电利用率
  • 英文关键词:distributed energy system;;adiabatic compressed energy storage;;cooling-heating-power cogeneration;;return ratio of compression heat;;utilization rate of wind power
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:同济大学机械与能源工程学院;新奥科技发展有限公司;
  • 出版日期:2018-08-31
  • 出版单位:中国电机工程学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点基础研究发展计划项目(973计划)(2014CB249201)~~
  • 语种:中文;
  • 页:ZGDC2018S1020
  • 页数:9
  • CN:S1
  • ISSN:11-2107/TM
  • 分类号:144-152
摘要
构建了一种耦合绝热压缩空气储能和风力发电机组的分布式能源系统模型,考虑了冷热电的联合供应以及电能不同时段、季节的费率结构。对各供能环节建立数学模型,并基于产能和用能的匹配对主要设备进行容量配置,分析系统中的能量流动情况。分析了压缩空气储能中关键参数对分布式能源系统性能的影响。研究结果表明:降低压缩热返还比、增加压缩机级数可减少系统能源费用,并提高风电利用率。当夜间风力较大时,选取较大的储气最大压比和压比范围可使风电利用率和能源费用同时达到最优。对于夏季特征天,当最大压比为140,最小压比取60时,风电利用率达到最大值82.4%,同时日消耗能源费用达到最低值72452元。通过与绝热压缩空气储能纯储电的供能系统比较,表明所提出的系统在能源费用和风电利用率上具有优势。
        A model of distributed energy system coupled with compressed air storage and wind turbines was constructed.Mathematical models for each energy supply unit are established. Cold, heat, and electric energy were supplied with the distributed energy system, and rate structure of electricity in different periods and seasons was taken into account. The capacity allocation of main equipment was carried out based on supply and demand matching, and the energy transfer in the system was analyzed. The effects of key parameters on energy supply characteristics of distributed energy system were emphatically analyzed. The research results show that reducing compressed heat return ratio, increasing number of compressors help to reduce energy costs and increase the utilization rate of wind power. When the wind is large at night,the maximum pressure ratio and range of pressure ratio should be large to obtain the optimal utilization rate of wind power and energy costs. For the summer characteristic days, when the maximum pressure ratio is 140 and the minimum pressure ratio is 60, the utilization rate of wind power reaches 82.4%, while energy costs reach $ 72452. By comparison with the energy supply system takes adiabatic compressed air energy storage as electric storage device shows that the system proposed in this paper has advantages in energy cost, and utilization of wind power.
引文
[1]马艺玮,杨苹,郭红霞,等.风–光–沼可再生能源分布式发电系统电源规划[J].电网技术,2012,36(9):9-14.Ma Yiwei,Yang Ping,Guo Hongxia,et al.Power source planning of wind-PV-Biogas renewable energy distributed generation system[J].Power System Technology,2012,36(9):9-14(in Chinese).
    [2] Jin H,Gao L,Han W,et al.Integrated energy systems based on cascade utilization of energy[J]. Front Energy Power Eng China,2007,1(1):16-31.
    [3] Li Y,Xia Y.DES/CCHP:The best utilization mode of natural gas for China’s low carbon economy[J]. Energy Policy,2013(53):477-483.
    [4]刘金龙.基于绝热压缩空气储能的分布式冷热功联产系统[D].合肥:中国科学技术大学,2016.Liu Jinlong. Distributed combined cooling heating and power system based on adiabatic compressed air energy storage[D].Hefei:University of Science and Technology of China,2016(in Chinese).
    [5] Cho H,Mago P J,Luck R,et al.Evaluation of CCHP systems performance based on operational cost,primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme[J].Applied Energy,2009,86(12):2540-2549.
    [6] Maton J P,Li Zhao,Brouwer J.Dynamic modeling of compressed gas energy storage to complement renewable wind power intermittency[J]. International journal of hydrogen energy,2013,38(19):7867-7880.
    [7] Facci A L,Sánchez D,Jannelli E,et al.Trigenerative micro compressed air energy storage:Concept and thermodynamic assessment[J]. Applied Energy,2015(158):243-254.
    [8]刘士名.先进绝热压缩空气储能系统热力性能与经济性分析[D].北京:华北电力大学,2016.Liu Shiming. Analysis of thermal performance and economy for advanced adiabatic compressed air energy storage(AA-CAES)systems[D]. Beijing:North China Electric Power University,2016(in Chinese).
    [9] Li Y,Wang X,Li D,et al.A trigeneration system based on compressed air and thermal energy storage[J].Applied Energy,2012,99(6):316-323.
    [10]韩中合,刘士名,周权,等.恒壁温储气模型下先进绝热压缩空气储能系统性能分析[J].中国电机工程学报,2016,36(12):3373-3380.Han Zhonghe, Liu Shiming, Zhou Quan, et al.Performance analysis of AA-CAES system with constant wall-temperature air storage model[J].Proceedings of the CSEE,2016,36(12):3373-3380(in Chinese).
    [11] Arsie I,Marano V,Rizzo G,et al.Integration of wind turbines with compressed air energy storage[J]. Power Control and Optimization:Proceedings of the Second Global Conference,2009,1159(1):11-18.
    [12] Arsie I,Marano V,Nappi G,et al.A model of a hybrid power plant with wind turbines and compressed air energy storage[J].ASME Power,2005,25(1):987-1000.
    [13]张远,杨科,李雪梅,等.基于先进绝热压缩空气储能的冷热电联产系统[J].工程热物理学报,2013,34(11):1991-1996.Zhang Yuan,Yang Ke,Li Xuemei,et al.A combined cooling, heating and power(CCHP)system based on advanced adiabatic compressed air energy storage(AA-CAES)technology[J]. Journal of Engineering Thermophysics,2013,34(11):1991-1996(in Chinese).
    [14] He F, Xu Y, Zhang X, et al. Hybrid CCHP system combined with compressed air energy storage[J].International Journal of Energy Research,2015,39(13):1807-1818.
    [15]姚尔人,王焕然,席光.一种压缩空气储能与内燃机技术耦合的冷热电联产系统[J].西安交通大学学报,2016,50(1):22-27.Yao Erren,Wang Huanran,Xi Guang.A novel combined cooling heating and power system with coupled compressed air energy storage and combustion engine[J].Journal of Xi’an Jiaotong University, 2016, 50(1):22-27(in Chinese).
    [16]张洪伟,龙妍,黄素逸.分布式能源系统的方案选择及性能分析[J].暖通空调,2004,34(5):47-51.Zhang Hongwei, Long Yan, Huang Suyi. Scheme selection and performance analysis of distributed energy systems[J].Journal of HV&AC,2004,34(5):47-51(in Chinese).
    [17] Fu L,Zhao X L,Zhang S G,et al.Laboratory research on combined cooling, heating and power(CCHP)systems[J].Energy Conversion and Management,2009,50(4):977-982.
    [18] Beaudin M,Zareipour H,Schellenberglabe A,et al.Energy storage for mitigating the variability of renewable electricity sources:An updated review[J]. Energy for Sustainable Development,2010,14(4):302-314.
    [19] Zhao P,Dai Y P,Wang J F.Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES(adiabatic compressed air energy storage)and FESS(flywheel energy storage system)for wind power application[J].Energy,2014,70(3):674-684.
    [20] Safaei H,Keith D W,Hugo R J.Compressed air energy storage(CAES)with compressors distributed at heat loads to enable waste heat utilization[J].Applied Energy,2013,103:165-179.
    [21]薛小代,刘彬卉,汪雨辰,等.基于压缩空气储能的社区微能源网设计[J].中国电机工程学报,2016,36(12):3306-3313.Xue Xiaodai,Liu Binhui,Wang Yuchen,et al.Micro energy network design for community based on compressed air energy storage[J]. Proceedings of the CSEE,2016,36(12):3306-3313(in Chinese).
    [22] Jubeh N M, Najjar Y S H. Green solution for power generation by adoption of adiabatic CAES system[J].Applied Thermal Engineering,2012,44(44):85-89.
    [23]徐焕祥.风能–压缩空气–柴油联合发电循环理论研究[D].杭州:浙江大学,2015.Xu Huanxiang. Theoretical study of wind-compressed air-diesel hybrid power system[D].Hangzhou:Zhejiang University,2015(in Chinese).
    [24]熊焰,吴杰康,王强,等.风光气储互补发电的冷热电联供优化协调模型及求解方法[J].中国电机工程学报,2015,35(14):3616-3625.Xiong Yan, Wu Jiekang, Wang Qiang, et al. An optimization coordination model and solution for combined cooling, heating and electric power systems with complimentary generation of wind, PV, gas and energy storage[J]. Proceedings of the CSEE, 2015,35(14):3616-3625(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700