湖相砂质碎屑流与底流改造砂沉积特征对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deposition characteristics comparison between sandy debris flow and bottom current rework sand in lacustrine basin
  • 作者:吕鹏佶
  • 英文作者:LYU Pengji;Research Institute of Exploration and Development,Liaohe Oilfield Company, PetroChina;
  • 关键词:沉积特征 ; 砂质碎屑流 ; 底流改造砂 ; 陆相湖盆 ; 曲塘次凹
  • 英文关键词:deposition characteristics;;sandy debris flow;;bottom current rework sand;;continental lacustrine basin;;Qutang sub-sag
  • 中文刊名:DKYT
  • 英文刊名:Fault-Block Oil & Gas Field
  • 机构:中国石油辽河油田分公司勘探开发研究院;
  • 出版日期:2019-03-25
  • 出版单位:断块油气田
  • 年:2019
  • 期:v.26;No.152
  • 基金:国家科技重大专项课题“渤海湾盆地北部油气富集规律与增储领域研究”(2012X05006-005)、“渤海湾盆地辽河坳陷中深层稠油开发技术示范工程”(2008ZX05053-002)
  • 语种:中文;
  • 页:DKYT201902005
  • 页数:5
  • CN:02
  • ISSN:41-1219/TE
  • 分类号:21-25
摘要
基于苏北盆地曲塘次凹阜三段研究成果,结合取心井岩心资料,重点研究了陆相湖盆砂质碎屑流与底流改造砂的成因机制、岩性特征、沉积构造及物性特征差异。对比结果表明:砂质碎屑流属于块体流沉积,而底流改造砂的形成机制受到风驱底流的控制,主要为长期活跃的底流;底流改造砂较碎屑流砂体而言,石英体积分数降低,岩屑体积分数升高,黏土体积分数升高,砂体明显减薄;碎屑流砂体沉积构造主要是块状层理,而底流改造砂体的沉积构造主要有波状交错层理和水平层理,普遍发育泥岩纹层;底流改造砂体储层物性差,孔渗相关性差。这2类砂体在湖相深水区中呈交互沉积,为苏北盆地曲塘次凹阜三段地层"满凹含砂"奠定了物质基础。
        Based on the research of the third Member of Funing Formation in Qutang sub-sag of Subei Basin and the core data, this paper focuses on the differences of formation mechanism, lithology, sedimentary structure and reservoir physical characteristics of sandy debris flow and bottom current rework sand deposits in lacustrine basin. The results show that sandy debris flow belongs to mass transport flow, and the formation mechanism of bottom current rework sand deposits is bottom current of long-term activity under the control of wind. Compared with the sandy debris flow deposits, the characteristics of bottom current rework sand deposits have low quartz content, high debris content, high clay content, and thin body thickness. The sedimentary structure of sandy debris flow deposits is mainly massive bedding; while the sedimentary structures of bottom current rework sand deposits are mainly wavy cross bedding and horizontal bedding and commonly mudstone laminae is developed. Bottom current rework sand deposits have a poor reservoir property and a poor correlation between porosity and permeability. In the deep lake region, this two types of sand bodies are alternately deposited and have laid a sufficient material foundation for containing sand deposition everywhere in the subsag of the third Member of Funing Formation in Qutang sub-sag of Subei Basin.
引文
[1] KUENEN P H,MIGLIONRINI C I. Turbidity currents as a cause of graded bedding[J]. Journal of Geology,1950,58(2):97-127.
    [2] BOUMA A H. Sedimentology of some flysch deposits:a graphic approach to facies interpretation[M]. Amsterdam:Elsevier Pub. Co.,1962:88-123.
    [3] BOUMA A H. Recent and ancient turbidites and contourites[J].Transactions-Gulf Coast Association of Geological Societies,1962,22(1):205-221.
    [4] NORMARK W R. Growth patterns of deep sea fans[J]. American Association of Petroleum Geologists Bulletin,1970,54(3):2170-2195.
    [5] WALKER R G. Deep-water sandstone facies and ancient submarine fans:models for exploration for stratigraphic traps[J]. American Association of Petroleum Geologists Bulletin,1978,62(2):932-966.
    [6] SHANMUGAM G, MOIOLA R J. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma[J]. American Association of Petroleum Geologists Bulletin,1995,79(1):672-695.
    [7] SHANMUGAM G, MOIOLA R J. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma:reply[J]. American Association of Petroleum Geologists Bulletin,1997,81(4):476-491.
    [8] SHANMUGAM G,MOIOLA R J,MCPHERSON J G,et al. Comparison of turbidite facies associations in modern passive-margin in Mississippi Fan with ancient active-margin fans[J]. Sedimentary Geology,1988,58(2):63-77.
    [9] SHANMUGAM G. Ten turbidite myths[J]. Earth-Science Reviews,2002,58(1):311-341.
    [10]肖子洋,黄传炎,谢通,等.砂质碎屑流典型特征及识别标志[J].特种油气藏,2016,23(2):45-49.
    [11]邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征[J].沉积学报,2009,27(6):1065-1075.
    [12]陈飞,胡光义,孙立春,等.鄂尔多斯盆地富县地区上三叠统延长组砂质碎屑流沉积特征及其油气勘探意义[J].沉积学报,2002,30(6):1042-1052.
    [13]江琦,丁晓琪,刘曦翔,等.鄂尔多斯盆地南部长8段砂质碎屑流储层特征及主控因素[J].东北石油大学学报,2015,39(6):56-63.
    [14]李楠,李国辉,吴长江,等.坡折带控制下的砂质碎屑流对油气勘探的意义[J].四川地质学报,2014,34(4):505-509.
    [15]李相博,付金华,陈启林,等.砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J].地球科学进展,2011,26(3):286-292.
    [16]吴远坤,陈吉,王春红,等.南堡凹陷深层砂质碎屑流储层特征[J].特种油气藏,2014,21(6):57-60.
    [17]潘树新,陈彬滔,刘华清,等.陆相湖盆深水底流改造砂:沉积特征、成因及其非常规油气勘探意义[J].天然气地球科学,2014,25(10):1577-1585.
    [18]涂漫.低渗高凝油藏注水工艺适应性研究[D].武汉:长江大学,2011.
    [19]邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特征[J].石油学报,2009,30(3):324-331.
    [20]王志萍,王保全,刘艺萌,等.渤海油田JZ31构造东二段湖底扇地震沉积学研究[J].断块油气田,2017,24(4):452-455.
    [21]赖生华,柳伟明,赵永刚,等.利用地震信息研究沉积体系平面分布特征[J].石油实验地质,2017,39(2):272-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700