Flexoelectric materials and their related applications: A focused review
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flexoelectric materials and their related applications: A focused review
  • 作者:Longlong ; SHU ; Renhong ; LIANG ; Zhenggang ; RAO ; Linfeng ; FEI ; Shanming ; KE ; Yu ; WANG
  • 英文作者:Longlong SHU;Renhong LIANG;Zhenggang RAO;Linfeng FEI;Shanming KE;Yu WANG;School of Materials Science and Engineering, Nanchang University;Jiangxi Key Laboratory for Two-dimensional Materials and Devices, and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University;
  • 英文关键词:flexoelectricity;;strain gradient;;electric polarization;;dielectric constant;;liquid crystals;;sensors and actuators
  • 中文刊名:JOAC
  • 英文刊名:先进陶瓷(英文)
  • 机构:School of Materials Science and Engineering, Nanchang University;Jiangxi Key Laboratory for Two-dimensional Materials and Devices, and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Advanced Ceramics
  • 年:2019
  • 期:v.8
  • 基金:supported by the National Natural Science Foundation of China under Grant Nos. 11574126 and 11604135;; the Natural Science Foundation of Jiangxi Province (No. 20161BAB216110);; China Postdoctoral Science Foundation (No. 2017M612162);; Postdoctoral Science Foundation of Jiangxi Province (No. 2017KY02)
  • 语种:英文;
  • 页:JOAC201902001
  • 页数:21
  • CN:02
  • ISSN:10-1154/TQ
  • 分类号:3-23
摘要
Flexoelectricity refers to the mechanical-electro coupling between strain gradient and electric polarization, and conversely, the electro-mechanical coupling between electric field gradient and mechanical stress. This unique effect shows a promising size effect which is usually large as the material dimension is shrunk down. Moreover, it could break the limitation of centrosymmetry, and has been found in numerous kinds of materials which cover insulators, liquid crystals, biological materials, and semiconductors. In this review, we will give a brief report about the recent discoveries in flexoelectricity, focusing on the flexoelectric materials and their applications. The theoretical developments in this field are also addressed. In the end, the perspective of flexoelectricity and some open questions which still remain unsolved are commented upon.
        Flexoelectricity refers to the mechanical-electro coupling between strain gradient and electric polarization, and conversely, the electro-mechanical coupling between electric field gradient and mechanical stress. This unique effect shows a promising size effect which is usually large as the material dimension is shrunk down. Moreover, it could break the limitation of centrosymmetry, and has been found in numerous kinds of materials which cover insulators, liquid crystals, biological materials, and semiconductors. In this review, we will give a brief report about the recent discoveries in flexoelectricity, focusing on the flexoelectric materials and their applications. The theoretical developments in this field are also addressed. In the end, the perspective of flexoelectricity and some open questions which still remain unsolved are commented upon.
引文
[1]Lu H,Bark C-W,Esque de los Ojos D,et al.Mechanical writing of ferroelectric polarization.Science 2012,336:59-61.
    [2]Catalan G,Lubk A,Vlooswijk AHG,et al.Flexoelectric rotation of polarization in ferroelectric thin films.Nat Mater 2011,10:963-967.
    [3]Zubko P,Catalan G,Tagantsev AK.Flexoelectric effect in solids.Annu Rev Mater Res 2013,43:387-421.
    [4]Kalinin SV,Morozovska AN.Focusing light on flexoelectricity.Nat Nanotechnol 2015,10:916-917.
    [5]Cross LE.Flexoelectric effects:Charge separation in insulating solids subjected to elastic strain gradients.JMater Sci 2006,41:53-63.
    [6]Prost J,Pershan PS.Flexoelectricity in nematic and smectic-A liquid crystals.J Appl Phys 1976,47:2298-2312.
    [7]Indenbom VL,Loginov EB,Osipov MA.Flexoelectric effect and crystal-structure.Kristallografiya 1981,26:1157-1162.
    [8]Kogan SM.Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals.Soviet Physics-Solid State 1964,5:2069-2070.
    [9]Petrov AG.Flexoelectricity of model and living membranes.BBA-Biomembranes 2002,1561:1-25.
    [10]Breneman KD,Brownell WE,Rabbitt RD.Hair cell bundles:Flexoelectric motors of the inner ear.PLo S One2009,4:e5201.
    [11]Shu LL,Li F,Huang W,et al.Relationship between direct and converse flexoelectric coefficients.J Appl Phys 2014,116:144105.
    [12]Shu LL,Wei XY,Pang T,et al.Symmetry of flexoelectric coefficients in crystalline medium.J Appl Phys 2011,110:104106.
    [13]Yudin PV,Tagantsev AK.Fundamentals of flexoelectricity in solids.Nanotechnology 2013,24:432001.
    [14]Majdoub MS,Sharma P,Cagin T.Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect.Phys Rev B2008,77:125424.
    [15]Nguyen TD,Mao S,Yeh Y-W,et al.Nanoscale flexoelectricity.Adv Mater 2013,25:946-974.
    [16]Chu K,Jang B-K,Sung JH,et al.Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients.Nat Nanotechnol 2015,10:972-979.
    [17]Shu LL,Yong ZH,Jiang XN,et al.Flexoelectricity in low densification materials and its implication.J Alloys Compd 2017,695:1555-1560.
    [18]Fousek J,Cross LE,Litvin DB.Possible piezoelectric composites based on the flexoelectric effect.Mater Lett1999,39:287-291.
    [19]Tagantsev AK.Theory of flexoelectric effect in crystals.Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 1985,88:2108-2122.
    [20]Tagantsev AK.Piezoelectricity and flexoelectricity in crystalline dielectrics.Phys Rev B 1986,34:5883.
    [21]Maranganti R,Sharma P.Atomistic determination of flexoelectric properties of crystalline dielectrics.Phys Rev B 2009,80:054109.
    [22]Hong JW,Vanderbilt D.First-principles theory of frozen-ion flexoelectricity.Phys Rev B 2011,84:180101.
    [23]Hong JW,Vanderbilt D.First-principles theory and calculation of flexoelectricity.Phys Rev B 2013,88:174107.
    [24]Abdollahi A,Vásquez-Sancho F,Catalan G.Piezoelectric mimicry of flexoelectricity.Phys Rev Lett 2018,121:205502.
    [25]Le Quang H,He QC.The number and types of all possible rotational symmetries for flexoelectric tensors.PRoy Soc A-Math Phy 2011,467:2369-2386.
    [26]Shu LL,Huang WB,Ryung Kwon S,et al.Converse flexoelectric coefficient f1212 in bulk Ba0.67Sr0.33TiO3.Appl Phys Lett 2014,104:232902.
    [27]Zhou H,Pei YM,Hong JW,et al.Analytical method to determine flexoelectric coupling coefficient at nanoscale.Appl Phys Lett 2016,108:101908.
    [28]Hu TT,Deng Q,Liang X,et al.Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment.J Appl Phys 2017,122:055106.
    [29]Zhang SW,Liang X,Xu ML,et al.Shear flexoelectric response along 3121 direction in polyvinylidene fluoride.Appl Phys Lett 2015,107:142902.
    [30]Zhang SW,Liu KY,Wu TH,et al.Experimental approach for measuring cylindrical flexoelectric coefficients.JAppl Phys 2017,122:144103.
    [31]Zhang SW,Liu KY,Xu ML,et al.Investigation of the2312 flexoelectric coefficient component of polyvinylidene fluoride:Deduction,simulation,and mensuration.Sci Rep 2017,7:3134.
    [32]Chu BJ,Salem DR.Flexoelectricity in several thermoplastic and thermosetting polymers.Appl Phys Lett 2012,101:103905.
    [33]Chu BJ,Zhu WY,Li N,et al.Flexure mode flexoelectric piezoelectric composites.J Appl Phys 2009,106:104109.
    [34]Zhou Y,Liu J,Hu XP,et al.Flexoelectric effect in PVDF-based polymers.IEEE Trans Dielect El In 2017,24:727-731.
    [35]Ma WH,Cross LE.Flexoelectricity of barium titanate.Appl Phys Lett 2006,88:232902.
    [36]Narvaez J,Saremi S,Hong JW,et al.Large flexoelectric anisotropy in paraelectric barium titanate.Phys Rev Lett2015,115:037601.
    [37]Ma WH,Cross LE.Flexoelectric polarization of barium strontium titanate in the paraelectric state.Appl Phys Lett2002,81:3440-3442.
    [38]Shu LL,Wang T,Jiang XN,et al.Verification of the flexoelectricity in barium strontium titanate through d33meter.AIP Adv 2016,6:125003.
    [39]Li Y,Shu LL,Huang WB,et al.Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite.Appl Phys Lett2014,105:162906.
    [40]Shu LL,Wan MQ,Wang ZG,et al.Large flexoelectricity in Al2O3-doped Ba(Ti0.85Sn0.15)O3 ceramics.Appl Phys Lett 2017,110:192903.
    [41]Shu LL,Wei XY,Jin L,et al.Enhanced direct flexoelectricity in paraelectric phase of Ba(Ti0.87Sn0.13)O3ceramics.Appl Phys Lett 2013,102:152904.
    [42]Ma WH,Cross LE.Strain-gradient-induced electric polarization in lead zirconate titanate ceramics.Appl Phys Lett 2003,82:3293-3295.
    [43]Zhu JQ,Chen TW,Shu LL,et al.Flexoelectric fatigue in(K,Na,Li)(Nb,Sb)O3 ceramics.Appl Phys Lett 2018,113:182901.
    [44]Shu LL,Li T,Wang ZG,et al.Flexoelectric behavior in PIN-PMN-PT single crystals over a wide temperature range.Appl Phys Lett 2017,111:162901.
    [45]Ma WH,Cross LE.Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics.Appl Phys Lett2001,78:2920-2921.
    [46]Narvaez J,Catalan G.Origin of the enhanced flexoelectricity of relaxor ferroelectrics.Appl Phys Lett2014,104:162903.
    [47]Vales-Castro P,Roleder K,Zhao L,et al.Flexoelectricity in antiferroelectrics.Appl Phys Lett 2018,113:132903.
    [48]Zubko P,Catalan G,Buckley A,et al.Straingradient-induced polarization in SrTiO3 single crystals.Phys Rev Lett 2007,99:167601.
    [49]Biancoli A,Fancher CM,Jones JL,et al.Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity.Nat Mater 2015,14:224-229.
    [50]Borisevich AY,Eliseev EA,Morozovska AN,et al.Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction.Nat Commun 2012,3:775.
    [51]Garten LM,Trolier-Mckinstry S.Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate.J Appl Phys 2015,117:094102.
    [52]Resta R.Towards a bulk theory of flexoelectricity.Phys Rev Lett 2010,105:127601.
    [53]Shu LL,Wan MQ,Jiang XN,et al.Frequency dispersion of flexoelectricity in PMN-PT single crystal.AIP Adv2017,7:015010.
    [54]Zhang XT,Pan Q,Tian DX,et al.Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics.Phys Rev Lett 2018,121:057602.
    [55]Raphael RM,Popel AS,Brownell WE.A membrane bending model of outer hair cell electromotility.Biophys J 2000,78:2844-2862.
    [56]Petrov AG.Flexoelectricity in lyotropics and in living liquid crystals.In:Flexoelectricity in Liquid Crystals.Imperial College Press,2012:177-210.
    [57]Abou-Dakka M,Herrera-Valencia EE,Rey AD.Linear oscillatory dynamics of flexoelectric membranes embedded in viscoelastic media with applications to outer hair cells.J Non-Newton Fluid 2012,185-186:1-17.
    [58]Jiang XN,Huang WB,Zhang SJ.Flexoelectric nano-generator:Materials,structures and devices.Nano Energy 2013,2:1079-1092.
    [59]Kang HM,Hou ZD,Qin QH.Experimental study of time response of bending deformation of bone cantilevers in an electric field.J Mech Behav Biomed 2018,77:192-198.
    [60]Williams WS,Breger L.Piezoelectricity in tendon and bone.J Biomech 1975,8:407-413.
    [61]Vasquez-Sancho F,Abdollahi A,Damjanovic D,et al.Flexoelectricity in bones.Adv Mater 2018,30:1801413.
    [62]Bayley H,Cronin B,Heron A,et al.Droplet interface bilayers.Mol BioSyst 2008,4:1191-1208.
    [63]Booth MJ,Restrepo Schild V,Downs FG,et al.Functional aqueous droplet networks.Mol BioSyst 2017,13:1658-1691.
    [64]Challita EJ,Makhoul-Mansour MM,Freeman EC.Reconfiguring droplet interface bilayer networks through sacrificial membranes.Biomicrofluidics 2018,12:034112.
    [65]Makhoul-Mansour M,Zhao WJ,Gay N,et al.Ferrofluid-based droplet interface bilayer networks.Langmuir 2017,33:13000-13007.
    [66]Freeman EC,Najem JS,Sukharev S,et al.The mechanoelectrical response of droplet interface bilayer membranes.Soft Matter 2016,12:3021-3031.
    [67]Kancharala A,Freeman E,Philen M.A comprehensive flexoelectric model for droplet interface bilayers acting as sensors and energy harvesters.Smart Mater Struct 2016,25:104007.
    [68]Tamaddoni N,Freeman EC,Sarles SA.Sensitivity and directionality of lipid bilayer mechanotransduction studied using a revised,highly durable membrane-based hair cell sensor.Smart Mater Struct 2015,24:065014.
    [69]Trabi CL,Brown CV,Smith AAT,et al.Interferometric method for determining the sum of the flexoelectric coefficients(e1+e3)in an ionic nematic material.Appl Phys Lett 2008,92:223509.
    [70]Harden J,Mbanga B,éber N,et al.Giant flexoelectricity of bent-core nematic liquid crystals.Phys Rev Lett 2006,97:157802.
    [71]Castles F,Morris SM,Coles HJ.The limits of flexoelectricity in liquid crystals.AIP Adv 2011,1:032120.
    [72]Buczkowska M,Derfel G.Influence of the surface pretilt angle on spatially periodic deformations in nematic layers.Liq Cryst 2018,45:961-964.
    [73]Inoue Y,Hattori M,Moritake H.Thickness-independent dynamics in cholesteric liquid crystals.Opt Express 2017,25:3566-3577.
    [74]Poddar A,Dhar J,Chakraborty S.Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects.Phys Rev E 2017,96:013114.
    [75]Varanytsia A,Chien LC.Bimesogen-enhanced flexoelectrooptic behavior of polymer stabilized cholesteric liquid crystal.J Appl Phys 2016,119:014502.
    [76]Varanytsia A,Chien LC.Giant flexoelectro-optic effect with liquid crystal dimer CB7CB.Sci Rep 2017,7:41333.
    [77]Vaupoti?N,Curk S,Osipov MA,et al.Short-range smectic fluctuations and the flexoelectric model of modulated nematic liquid crystals.Phys Rev E 2016,93:022704.
    [78]Kim M,Jin HS,Lee SJ,et al.Liquid crystals for superior electro-optic performance display device with powersaving mode.Adv Opt Mater 2018,6:1800022.
    [79]Lee D-J,Choi J-C,Park M-K,et al.Optical measurement of flexoelectric polarisation change in liquid crystals doped with bent-core molecules using hybrid-aligned structure.Liq Cryst 2017,44:1321-1331.
    [80]Kim MS,Bos PJ,Kim D-W,et al.Field-symmetrization to solve luminance deviation between frames in a lowfrequency-driven fringe-field switching liquid crystal cell.Opt Express 2016,24:29568-29576.
    [81]Kim M,Ham HG,Choi HS,et al.Flexoelectric in-plane switching(IPS)mode with ultra-high-transmittance,low-voltage,low-frequency,and a flicker-free image.Opt Express 2017,25:5962-5971.
    [82]Varshney D,Shriya S,Jain S,et al.Mechanically induced stiffening,thermally driven softening,and brittle nature of SiC.J Adv Ceram 2016,5:13-34.
    [83]He JH,Hsin CL,Liu J,et al.Piezoelectric gated diode of a single ZnO nanowire.Adv Mater 2007,19:781-784.
    [84]Ouyang J,Zhang W,Alpay SP,et al.Effect of elastic domains on electromechanical response of epitaxial ferroelectric films with a three-domain architecture.JAdv Ceram 2013,2:1-10.
    [85]Narvaez J,Vasquez-Sancho F,Catalan G.Enhanced flexoelectric-like response in oxide semiconductors.Nature 2016,538:219-221.
    [86]Yurkov AS,Tagantsev AK.Strong surface effect on direct bulk flexoelectric response in solids.Appl Phys Lett 2016,108:022904.
    [87]He B,Javvaji B,Zhuang XY.Size dependent flexoelectric and mechanical properties of barium titanate nanobelt:A molecular dynamics study.Physica B 2018,545:527-535.
    [88]Qi L,Zhou SJ,Li AQ.Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect.Compos Struct 2016,135:167-175.
    [89]Shen SP,Hu SL.A theory of flexoelectricity with surface effect for elastic dielectrics.J Mech Phys Solids 2010,58:665-677.
    [90]Huang WB,Kim K,Zhang SJ,et al.Scaling effect of flexoelectric(Ba,Sr)TiO3 microcantilevers.Phys Status Solidi RRL 2011,5:350-352.
    [91]Bai G,Qin K,Xie QY,et al.Size dependent flexocaloric effect of paraelectric Ba0.67Sr0.33TiO3 nanostructures.Mater Lett 2017,186:146-150.
    [92]Jeon BC,Lee D,Lee MH,et al.Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of BiFeO3 thin films.Adv Mater 2013,25:5643-5649.
    [93]Zhou WF,Chen P,Pan Q,et al.Lead-free metamaterials with enormous apparent piezoelectric response.Adv Mater 2015,27:6349-6355.
    [94]Lee D,Yoon A,Jang SY,et al.Giant flexoelectric effect in ferroelectric epitaxial thin films.Phys Rev Lett 2011,107:057602.
    [95]Gao P,Yang SZ,Ishikawa R,et al.Atomic-scale measurement of flexoelectric polarization at SrTiO3dislocations.Phys Rev Lett 2018,120:267601.
    [96]Tagantsev AK,Vaideeswaran K,Vakhrushev SB,et al.The origin of antiferroelectricity in PbZrO3.Nat Commun2013,4:2229.
    [97]Stengel M.Surface control of flexoelectricity.Phys Rev B2014,90:201112.
    [98]Mashkevich VS,Tolpygo KB.The interaction of vibrations of nonpolar crystals with electric fields.Soviet Physics Doklady 1957,1:690.
    [99]Yudin PV,Ahluwalia R,Tagantsev AK.Upper bounds for flexoelectric coefficients in ferroelectrics.Appl Phys Lett2014,104:082913.
    [100]Yurkov AS,Tagantsev AK.Strong surface effect on direct bulk flexoelectric response in solids.Appl Phys Lett 2016,108:022904.
    [101]Hong JW,Catalan G,Scott JF,et al.The flexoelectricity of barium and strontium titanates from first principles.JPhys:Condens Matter 2010,22:112201.
    [102]Banerjee AS,Suryanarayana P.Cyclic density functional theory:A route to the first principles simulation of bending in nanostructures.J Mech Phys Solids 2016,96:605-631.
    [103]Kvasov A,Tagantsev AK.Dynamic flexoelectric effect in perovskites from first-principles calculations.Phys Rev B 2015,92:054104.
    [104]Stengel M.Unified ab initio formulation of flexoelectricity and strain-gradient elasticity.Phys Rev B2016,93:245107.
    [105]Dreyer CE,Stengel M,Vanderbilt D.Current-density implementation for calculating flexoelectric coefficients.Phys Rev B 2018,98:075153.
    [106]Shi SH,Li P,Jin F.The mechanical analysis of thermomagneto-electric laminated composites in nanoscale with the consideration of surface and flexoelectric effects.Smart Mater Struct 2018,27:015018.
    [107]Bends?e MP,Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Comput Method Appl M 1988,71:197-224.
    [108]Wang MY,Wang XM,Guo DM.A level set method for structural topology optimization.Comput Method Appl M2003,192:227-246.
    [109]Zhu J-H,Zhang W-H,Xia L.Topology optimization in aircraft and aerospace structures design.Arch Comput Method E 2016,23:595-622.
    [110]Hong JW,Catalan G,Fang DN,et al.Topology of the polarization field in ferroelectric nanowires from first principles.Phys Rev B 2010,81:172101.
    [111]Chae SC,Horibe Y,Jeong DY,et al.Evolution of the domain topology in a ferroelectric.Phys Rev Lett 2013,110:167601.
    [112]Ghasemi H,Park HS,Rabczuk T.A level-set based IGAformulation for topology optimization of flexoelectric materials.Comput Method Appl M 2017,313:239-258.
    [113]Ghasemi H,Park HS,Rabczuk T.A multi-material level set-based topology optimization of flexoelectric composites.Comput Method Appl M 2018,332:47-62.
    [114]Li Q,Nelson CT,Hsu SL,et al.Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling.Nat Commun 2017,8:1468.
    [115]Kothari M,Cha M-H,Kim K-S.Critical curvature localization in graphene.I.Quantum-flexoelectricity effect.P Roy Soc A-Math Phy 2018,474:20180054.
    [116]Mao YQ,Ai SG,Xiang XL,et al.Theory for dielectrics considering the direct and converse flexoelectric effects and its finite element implementation.Appl Math Model2016,40:7115-7137.
    [117]Wang Y-J,Li J,Zhu Y-L,et al.Phase-field modeling and electronic structural analysis of flexoelectric effect at180°domain walls in ferroelectric PbTiO3.J Appl Phys2017,122:224101.
    [118]Plymill A,Xu HX.Flexoelectricity in ATiO3(A?=?Sr,Ba,Pb)perovskite oxide superlattices from density functional theory.J Appl Phys 2018,123:144101.
    [119]Nanthakumar SS,Zhuang XY,Park HS,et al.Topology optimization of flexoelectric structures.J Mech Phys Solids 2017,105:217-234.
    [120]Deng F,Deng Q,Shen SP.A three-dimensional mixed finite element for flexoelectricity.J Appl Mech 2018,85:031009.
    [121]Wan MQ,Yong ZH,Huang WB,et al.Design of a flexure composite with large flexoelectricity.J Mater Sci:Mater El 2017,28:6505-6511.
    [122]Jiang L,Xu X,Zhou Y.Interrelationship between flexoelectricity and strain gradient elasticity in ferroelectric nanofilms:A phase field study.J Appl Phys2016,120:234102.
    [123]Xu XF,Jiang LM,Zhou YC.Reduction of leakage currents in ferroelectric thin films by flexoelectricity:Aphase field study.Smart Mater Struct 2017,26:115024.
    [124]Hamdia KM,Ghasemi H,Zhuang XY,et al.Sensitivity and uncertainty analysis for flexoelectric nanostructures.Comput Method Appl M 2018,337:95-109.
    [125]Yadav AK,Nelson CT,Hsu SL,et al.Observation of polar vortices in oxide superlattices.Nature 2016,530:198-201.
    [126]Mo C,Davidson J,Clark WW.Energy harvesting with piezoelectric circular membrane under pressure loading.Smart Mater Struct 2014,23:045005.
    [127]Azizi S,Ghodsi A,Jafari H,et al.A conceptual study on the dynamics of a piezoelectric MEMS(Micro Electro Mechanical System)energy harvester.Energy 2016,96:495-506.
    [128]Jasim A,Wang H,Yesner G,et al.Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway.Energy 2017,141:1133-1145.
    [129]Ravi S,Zilian A.Monolithic modeling and finite element analysis of piezoelectric energy harvesters.Acta Mech2017,228:2251-2267.
    [130]Wong VK,Ho JH,Chai AB.Performance of a piezoelectric energy harvester in actual rain.Energy 2017,124:364-371.
    [131]Yang ZB,Wang YQ,Zuo L,et al.Introducing arc-shaped piezoelectric elements into energy harvesters.Energy Convers Manag 2017,148:260-266.
    [132]Zhou ZY,Qin WY,Zhu P.Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester.Energy 2017,126:527-534.
    [133]Qi L,Huang SJ,Fu GY,et al.On the mechanics of curved flexoelectric microbeams.Int J Eng Sci 2018,124:1-15.
    [134]Yan Z.Modeling of a piezoelectric/piezomagnetic nano energy harvester based on two dimensional theory.Smart Mater Struct 2018,27:015016.
    [135]Liang X,Hu SL,Shen SP.Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity.Smart Mater Struct 2017,26:035050.
    [136]Wang KF,Wang BL.Energy gathering performance of micro/nanoscale circular energy harvesters based on flexoelectric effect.Energy 2018,149:597-606.
    [137]Wang KF,Wang BL.An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect.Compos Struct 2016,153:253-261.
    [138]Choi S-B,Kim G-W.Measurement of flexoelectric response in polyvinylidene fluoride films for piezoelectric vibration energy harvesters.J Phys D:Appl Phys 2017,50:075502.
    [139]Han JK,Jeon DH,Cho SY,et al.Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects.Sci Rep2016,6:29562.
    [140]Zhu RJ,Wang ZM,Ma H,et al.Poling-free energy harvesters based on robust self-poled ferroelectric fibers.Nano Energy 2018,50:97-105.
    [141]Ray MC.Analysis of smart nanobeams integrated with a flexoelectric nano actuator layer.Smart Mater Struct2016,25:055011.
    [142]Ray MC.Mesh free model of nanobeam integrated with a flexoelectric actuator layer.Compos Struct 2017,159:63-71.
    [143]Zhang SW,Liu KY,Xu ML,et al.A curved resonant flexoelectric actuator.Appl Phys Lett 2017,111:082904.
    [144]Bhaskar UK,Banerjee N,Abdollahi A,et al.Aflexoelectric microelectromechanical system on silicon.Nat Nanotechnol 2016,11:263-266.
    [145]Kwon SR,Huang WB,Zhang SJ,et al.Flexoelectric sensing using a multilayered barium strontium titanate structure.Smart Mater Struct 2013,22:115017.
    [146]Huang WB,Yan X,Kwon SR,et al.Flexoelectric strain gradient detection using Ba0.64Sr0.36TiO3 for sensing.Appl Phys Lett 2012,101:252903.
    [147]Huang W,Kwon SR,Yuan FG,et al.A flexoelectric micro-accelerometer.ASME 2012,9:597-603.
    [148]Yan X,Huang WB,Kwon SR,et al.Design of a curvature sensor using a flexoelectric material.In:Proceedings of the SPIE 8692,Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems,2013:86920N.
    [149]Merupo VI,Guiffard B,Seveno R,et al.Flexoelectric response in soft polyurethane films and their use for large curvature sensing.J Appl Phys 2017,122:144101.
    [150]Kwon SR,Huang WB,Zhang SJ,et al.Study on a flexoelectric microphone using barium strontium titanate.J Micromech Microeng 2016,26:045001.
    [151]Gómez A,Vila-Fungueiri?o JM,Moalla R,et al.Electric and mechanical switching of ferroelectric and resistive states in semiconducting BaTiO3-δfilms on silicon.Small2017,13:1701614.
    [152]Lu HD,Liu S,Ye ZY,et al.Asymmetry in mechanical polarization switching.Appl Phys Lett 2017,110:222903.
    [153]Guo R,Shen L,Wang H,et al.Tailoring self-polarization of Ba Ti O3 thin films by interface engineering and flexoelectric effect.Adv Mater Interfaces 2016,3:1600737.
    [154]Vorotiahin IS,Morozovska AN,Eliseev EA,et al.Flexocoupling impact on the kinetics of polarization reversal.Phys Rev B 2017,95:014104.
    [155]Park SM,Wang B,Das S,et al.Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field.Nat Nanotechnol 2018,13:366-370.
    [156]Seol D,Yang SM,Jesse S,et al.Dynamic mechanical control of local vacancies in NiO thin films.Nanotechnology 2018,29:275709.
    [157]Das S,Wang B,Cao Y,et al.Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity.Nat Commun 2017,8:615.
    [158]Eliseev EA,Morozovska AN,Glinchuk MD,et al.Lost surface waves in nonpiezoelectric solids.Phys Rev B2017,96:045411.
    [159]Yang WJ,Deng Q,Liang X,et al.Lamb wave propagation with flexoelectricity and strain gradient elasticity considered.Smart Mater Struct 2018,27:085003.
    [160]Morozovska AN,Glinchuk MD,Eliseev EA,et al.Flexocoupling-induced soft acoustic modes and the spatially modulated phases in ferroelectrics.Phys Rev B2017,96:094111.
    [161]Liu YC,Chen JD,Wang C,et al.Bulk photovoltaic effect at infrared wavelength in strained Bi2Te3 films.Apl Mater2016,4:126104.
    [162]Yang MM,Kim DJ,Alexe M.Flexo-photovoltaic effect.Science 2018,360:904-907.
    [163]Lee W,Kim D,Lim J,et al.Light-induced electrical switch via photo-responsive nanocomposite film.Sensor Actuat B Chem 2018,266:724-729.
    [164]Liu YC,Chen JD,Deng HY,et al.Anomalous thermoelectricity in strained Bi2Te3 films.Sci Rep 2016,6:32661.
    [165]Chen P,Zhang HF,Chu BJ.Strain gradient induced thermal-electrical response in paraelectric Na0.5Bi0.5TiO3-based ceramics.Phys Rev Materials 2018,2:034401.
    [166]Patel S,Chauhan A,Madhar NA,et al.Flexoelectric induced caloric effect in truncated Pyramid shaped Ba0.67Sr0.33TiO3 ferroelectric material.J Electron Mater2017,46:4166-4171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700