青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatio-temporal dynamics of two alpine treeline ecotones and ecological characteristics of their dominate species at the eastern margin of Qinghai-Xizang Plateau
  • 作者:周天阳 ; NARAYAN ; Prasad ; Gaire ; 廖礼彬 ; 郑莉莉 ; 王金牛 ; 孙建 ; 魏彦强 ; 谢雨 ; 吴彦
  • 英文作者:ZHOU Tian-Yang;NARAYAN Prasad Gaire;LIAO Li-Bin;ZHENG Li-Li;WANG Jin-Niu;SUN-Jian;WEI Yan-Qiang;XIE Yu;WU Yan;Chengdu Institute of Biology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chinese Academy of Sciences;Central Department of Environmental Science, Tribhuvan University;Xishuangbanna Tropical Botanical garden, Chinese Academy of Sciences;Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;International Center for Integrated Mountain Development;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;
  • 关键词:树线 ; 时空动态 ; 龄级结构 ; 异速生长 ; 海拔梯度
  • 英文关键词:treeline;;spatio-temporal dynamics;;age structure;;allometric;;altitude gradient
  • 中文刊名:ZWSB
  • 英文刊名:Chinese Journal of Plant Ecology
  • 机构:中国科学院成都生物研究所;中国科学院大学;中国科学院山地生态恢复与生物资源利用重点实验室;特里布文大学中央环境科学院;中国科学院西双版纳热带植物园;中国科学院地理科学与资源研究所;国际山地综合发展中心;中国科学院西北生态环境资源研究院;
  • 出版日期:2018-11-20
  • 出版单位:植物生态学报
  • 年:2018
  • 期:v.42
  • 基金:国家自然科学基金(41661144045和31400389)~~
  • 语种:中文;
  • 页:ZWSB201811003
  • 页数:12
  • CN:11
  • ISSN:11-3397/Q
  • 分类号:32-43
摘要
热量匮乏是高山树线的主要成因,在全球变暖趋势下对高山树线及其建群种的生态学过程及特征的研究具有重要意义。该文以青藏高原东缘的折多山和剪子弯山两处高山树线(海拔分别为4 265 m和4 425 m)作为研究对象,通过设置垂直样带,同时结合区域温度、降水的长时间序列分析,探究两处树线的时空动态过程,并明确了建群种冷杉(Abies spp.)的生态学特征。结果表明:1)折多山和剪子弯山区域的气温在过去58年均存在显著的上升趋势(分别上升了0.72和0.91℃),而折多山和剪子弯山区域降水均存在微弱的降低趋势。2)折多山的峨眉冷杉(A. fabri)龄级结构呈反J形,剪子弯山的鳞皮冷杉(A. squamata)龄级结构呈双峰形,二者种群结构均相对稳定。3)在小尺度上,种子扩散限制使得两处树线的冷杉聚集分布。在大尺度上,折多山峨眉冷杉亦呈聚集分布,而剪子弯山鳞皮冷杉受生长环境以及种内或种间关系的影响呈随机分布。4)两处样地建群树种的树高和基径均随海拔升高而降低,位于树线交错带上部的冷杉均呈现树高生长大于径向生长的异速生长关系,而位于样地中、下部位的冷杉大部分呈等速生长关系。5)相比10年前,折多山和剪子弯山的树线及树种线位置均无明显变化,剪子弯山鳞皮冷杉种群的树木密度亦无明显变化,而折多山的树木个体数提高了约25%;相比20年前,折多山和剪子弯山的树种线分别上移了50和30 m,树线位置分别升高了75和40 m,树木个体数亦明显增加,分别提高了约220%和100%。树线及其建群种在较大时空尺度上主要受热量的控制,而在较小时空尺度上受温度及生长环境共同作用的影响。
        Aims Temperature limit is the main cause of alpine treeline formation. Therefore, it is important to understand the response mechanisms of alpine treeline as well as their tree species under the global climate change. The present study focused on the spatio-temporal dynamics of treeline and ecological characteristics of the tree species in two treeline ecotones.Methods Two vertical belt-transect plots were established in each treeline ecotone of the Zheduo Mountain and Jianziwan Mountain of the eastern Qinghai-Xizang Plateau. Top and bottom of each transects were lain between species line and forest line, respectively. Detailed information of each tree species treeline, including species name, latitude, longitude, height, age, base diameter, and coordinates, was recorded accordingly.Important findings The temperatures of the two research areas have increased during the past 58 years. The precipitation has decreased slightly in both the Zheduo Mountain and Jianziwan Mountain. The age structure of Abies fabri from the Zheduo Mountain and A. squamata from the Jianziwan Mountain showed a reversed "J"shape curve and a bimodal shape, respectively. Within the two transects, due to the limitation of seed diffusion,the dominate species showed aggregated distributions at the small scale. At the large scale, A. fabri was aggregated at the Zheduo Mountain, while A. squanmata of the Jianziwan Mountain was randomly distributed due to the impact of surrounding environmental factors. Both tree height and base diameter decreased with the increase of elevation. The fir trees(Abies spp.) at the upper part of the treeline ecotone presented an allometric growth,whose height growth rate was higher than that of base growth, while the relationships between height growth and base growth were isometric at almost mid and lower part of the treeline ecotone. Compared with 10 years ago,there was no significant change at the position of treeline and tree species line of the Zheduo Mountain and the Jianziwan Mountain, neither of the tree density in the Jianziwan Mountain. However, the number of trees in the Zheduo Mountain increased by about 25%. Compared with 20 years ago, tree species lines of the Zheduo Mountain and Jianziwan Mountain were shifted upwards by 50 and 30 m, respectively. Besides, their treeline positions were increased by 75 and 40 m, respectively. Furthermore, the number of trees also increased significantly by 220% and 100%, respectively. Therefore, the treeline and its constructive species are mainly affected by temperature at the large spatio-temporal scale, while influenced by temperature and ambient environment at the small spatio-temporal scale.
引文
Bai DZ(2012).The Impact Factors of Growth and Regeneration of Picea crassifolia Growing at Timberline in The Qilian Mountains.PhD dissertation,Chinese Academy of Forestry,Beijing.[白登忠(2012).祁连山青海云杉林线树木生长、更新的影响因素研究.博士学位论文,中国林业科学研究院,北京.]
    Batllori E,Blanco-Moreno JM,Ninot JM,Gutierrez E,Carrillo E(2009).Vegetation patterns at the alpine treeline ecotone:The influence of tree cover on abrupt change in species composition of alpine communities.Journal of Vegetation Science,20,814-825.
    Camarero JJ,Gutierrez E(2004).Pace and pattern of recent treeline dynamics,response of ecotones to climatic variability in the Spanish Pyrenees.Climatic Change,63,181-200.
    Cheng W,Luo P,Wu N(2005).Ecological characteristics of minjiang fir(Abies faxoniana Rehd.et Wild)population near timberline on upper Min River.Chinese Journal of Applied and Envirnmental Biology,11,300-303.[程伟,罗鹏,吴宁(2005).岷江上游林线附近岷江冷杉种群(Abies faxoniana Rehd.et Wild)的生态学特点.应用与环境生物学报,11,300-303.]
    Condit R,Ashton PS,Baker P,Bunyavejchewin S,Gunatilleke S,Gunatilleke N,Hubbell SP,Foster RB,Itoh A,Lafrankie JV,Lee HS,Losos E,Manokaran N,Sukumar R,Yamakura T(2000).Spatial patterns in the distribution of tropical tree species.Science,288,1414-1418.
    Dai JH,Cui HT(1999).A reviewon the studies of alpine timberline.Scientia Geographica Sinica,19(3),52-58.[戴君虎,崔海亭(1999).国内外高山林线研究综述.地理科学,19(3),52-58.]
    Falster DS,Westoby M(2003).Plant height and evolutionary games.Trends in Ecology&Evolution,18,337-343.
    Gaire NP,Koirala M,Bhuju DR,Borgaonkar HP(2014).Treeline dynamics with climate change at the Central Nepal Himalaya.Climate of the Past,10,1277-1290.
    Gao J,Wang JN,Xu B,Xie Y,He JD,Wu Y(2016).Plant leaf traits,height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow.Chinese Journal of Plant Ecology,40,775-787.[高景,王金牛,徐波,谢雨,贺俊东,吴彦(2016).不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究.植物生态学报,40,775-787.]
    Harsch MA,Hulme PE,Mcglone MS,Duncan RP(2009).Are treelines advancing?A global meta-analysis of treeline response to climate warming.Ecology Letters,12,1040-1049.
    IPCC(Intergovernmental Panel on Climate Change)(2014).Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,Cambridge,UK.
    Jin HJ,Ma QL,Zhang DK,Liu YJ,Yuan HB(2012).Analysis on typical shrub plant community characteristics and quantitative characteristics in Ulanbuh desert.Acta Botanica Boreall-Occidentalia Sinica,32,579-588.[靳虎甲,马全林,张德魁,刘有军,袁洪波(2012).乌兰布和沙漠典型灌木群落结构及数量特征.西北植物学报,32,579-588.]
    Kim JW,Lee JS(2015).Dynamics of alpine treelines:Positive feedbacks and global,regional and local controls.Journal of Ecology and Environment,38,1-14.
    Klasner FL,Fagre DB(2002).A half century of change in alpine treeline patterns at Glacier National Park,Montana,USA.Arctic Antarctic and Alpine Research,34,49-56.
    Knowles P,Grant MC(1983).Age and size structure analyses of engelmann spruce,ponderosa pine,lodgepole pine,and limber pine in Colorado.Ecology,64,1-9.
    K?rner C(1998).A re-assessment of high elevation treeline positions and their explanation.Oecologia,115,445-459.
    K?rner C(2003).Alpine Plant Life.2nd edn.Springer,Berlin.
    K?rner C(Translated by Wu N,Shi PL,Yi SL,Wang JN)(2017).Alpine Treelines.Publishing House of Electronics Industry,Beijing.[吴宁,石培礼,易绍良,王金牛(译)(2017).高山树线--全球高海拔树木生长上线的功能生态学.电子工业出版社,北京.]
    K?rner C,Paulsen J(2004).A world-wide study of high altitude treeline temperatures.Journal of Biogeography,31,713-732.
    Kullman L(1993).Tree timit dynamics of Betula pubescens ssp.tortuosa in relation to climate variability:Evidence from Central Sweden.Journal of Vegetation Science,4,765.
    Kullman L(2001).20th century climate warming and tree-limit rise in the southern Scandes of Sweden.AMBIO,30,72-80.
    Lan GY,Hu YH,Cao M,Zhu H,Wang H,Zhou SS,Deng XB,Cui JY,Huang JG,Liu LY,Xu HL,Song JP,He YC(2008).Establishment of Xishuangbanna tropical forest dynamics plot:Species compositions and spatial distribution patterns.Chinese Journal of Plant Ecology(Chinese Version),32,287-298.[兰国玉,胡跃华,曹敏,朱华,王洪,周仕顺,邓晓保,崔景云,黄建国,刘林云,许海龙,宋军平,何有才(2008).西双版纳热带森林动态监测样地--树种组成与空间分布格局.植物生态学报,32,287-298.]
    Li GC,Song HD,Li Q,Bu SH(2017).Spatial point pattern analysis of main trees and flowering Fargesia qinlingensis in Abies fargesii forests in Mt.Taibai of the Qinling Mountains,China.Chinese Journal of Applied Ecology,28,3487-3493.[李国春,宋华东,李琦,卜书海(2017).太白山巴山冷杉林主要树种与开花秦岭箭竹的空间点格局分析.应用生态学报,28,3487-3493.]
    Li LP,Mohamma A,Wang XP(2011).Study on relationship between height and DBH of mountain coniferous forests in Xinjiang.Arid Zone Research,28(1),47-53.[李利平,安尼瓦尔·买买提,王襄平(2011).新疆山地针叶林乔木胸径-树高关系分析.干旱区研究,28(1),47-53.]
    Liang EY,Leuschner C,Dulamsuren C,Wagner B,Hauck M(2016).Global warming-related tree growth decline and mortality on the north-eastern Tibetan Plateau.Climatic Change,13,163-176.
    Liang EY,Wang YF,Eckstein D,Luo TX(2011).Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming.New Phytologist,190,760-769.
    Liu XD,Chen BD(2000).Climatic warming in the Tibetan Plateau during recent decades.International Journal of Climatology,20,1729-1742.
    Lloyd AH,Fastie CL(2002).Spatial and temporal variability in the growth and climate response of treeline trees in Alaska.Climate Change,52,481-509.
    Lloyd AH,Fastie CL(2003).Recent changes in treeline forest distribution and structure in interior Alaska.Ecoscience,10,176-185.
    Luckman B,Kavanagh T(2000).Impact of climate fluctuations on mountain environments in the Canadian Rockies.AM-BIO,29,371-380.
    MacDonald GM,Szeicz JM,Claricoates J,Dale KA(1998).Response of the central Canadian treeline to recent climatic changes.Annals of the Association of American Geographers,88,183-208.
    Mayr S,Charra-Vaskou K(2007).Winter at the alpine timberline causes complex within-tree patterns of water potential and embolism in Picea abies.Physiologia Plantarum,131,131-139.
    Niklas KJ(2005).Modelling below-and above-ground biomass for non-woody and woody plants.Annals of Botany,95,315-321.
    Pelissier R,Goreaud F(2015).Ads package for R:A fast unbiased implementation of the k-function family for studying spatial point patterns in irregular-shaped sampling windows.Journal of Statistical Software,63,1-18.
    Ran F,Liang YM,Yang Y,Yang Y,Wang GX(2014).Spatialtemporal dynamics of an Abies fabri population near the alpine treeline in the Yajiageng area of Gongga Mountain,China.Acta Ecologica Sinica,34,6872-6878.[冉飞,梁一鸣,杨燕,杨阳,王根绪(2014).贡嘎山雅家埂峨眉冷杉林线种群的时空动态.生态学报,34,6872-6878.]
    Ripley BD(1977).Modeling spatial patterns.Journal of the Royal Statistical Society Series B-Methodological,39,172-212.
    Shi CM,Masson-Delmotte V,Daux V,Li ZS,Carre M,Moore JC(2015).Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from alpine treeline dendrochronology.Climate Dynamics,45,1367-1380.
    Shi JY,Han HR,Cheng XQ,Dong LL,Tian HX,Cai MK,Kang FF(2017).Age structure and dynamics of Pinus tabuliformis population in the Liaoheyuan Nature Reserve of Hebei Province.Chinese Journal of Ecology,36,1808-1814.[矢佳昱,韩海荣,程小琴,董玲玲,田慧霞,蔡锰柯,康峰峰(2017).河北辽河源自然保护区油松种群年龄结构和种群动态.生态学杂志,36,1808-1814.]
    Stevens GC,Fox JF(1991).The causes of treeline.Annual Review of Ecology and Systematics,22,177-191.
    Stewart GH,Rose AB(1990).The significance of life-history strategies in the developmental history of mixed beech(nothofagus)forests,New-Zealand.Vegetatio,87,101-114.
    van Bogaert R,Haneca K,Hoogesteger J,Jonasson C,de Dapper M,Callaghan TV(2011).A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th Century climate warming.Journal of Biogeography,38,907-921.
    Wang T,Zhang QB,Ma KP(2006).Treeline dynamics in relation to climatic variability in the central Tianshan Mountains,northwestern China.Global Ecology and Biogeography,15,406-415.
    Wang YF,Julio Camarero J,Luo TX,Liang EY(2012).Spatial patterns of smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns.Plant Ecology&Diversity,5,311-321.
    Wang YF,Liang EY(2012).A review on progresses in treeline dynamics and climate change.Journal of Earth Environment,3,855-861.[王亚锋,梁尔源(2012).树线波动与气候变化研究进展.地球环境学报,3,855-861.]
    Wang YF,Liang EY,Lu XM,Zhu HF,Piao SL,Zhu LP(2017).Are treelines advancing in response to climate warming on the Tibetan Plateau?Chinese Journal of Nature,39,179-183.[王亚锋,梁尔源,芦晓明,朱海峰,朴世龙,朱立平(2017).气候变暖会使青藏高原树线一直上升吗?自然杂志,39,179-183.]
    Warton DI,Duursma RA,Falster DS,Taskinen S(2012).Smatr3-An R package for estimation and inference about allometric lines.Methods in Ecology and Evolution,3,257-259.
    Warton DI,Wright IJ,Falster DS,Westoby M(2006).Bivariate line-fitting methods for allometry.Biological Reviews,81,259-291.
    Wilmking M,Juday GP,Barber VA,Zald HSJ(2004).Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds.Global Change Biology,10,1724-1736.
    Wong MH,Duan CQ,Long YC,Luo YM,Xie GQ(2010).How will the distribution and size of subalpine Abies georgei forest respond to climate change?A study in northwest Yunnan,China.Physical Geography,31,319-335.
    Xie CQ,Tian MX,Zhao ZR,Zheng WL,Wang GY(2015).Spatial point pattern analysis of Abies georgei var.smithii in forest of Sygera Mountains in southeast Tibet,China.Chinese Journal of Applied Ecology,26,1617-1624.[解传奇,田民霞,赵忠瑞,郑维列,王国严(2015).西藏色季拉山急尖长苞冷杉种群点格局分析.应用生态学报,26,1617-1624.]
    Xie ZQ,Chen WL,Lu P,Hu D(1999).The demography and age structure of the endangered plant population of Cathaya argyrophylla.Acta Ecologica Sinica,19,523-528.[谢宗强,陈伟烈,路鹏,胡东(1999).濒危植物银杉的种群统计与年龄结构.生态学报,19,523-528.]
    Yang H,Li YL,Shen L,Kang XG,Yue G,Wang Y(2014).Spatial distribution patterns of seedling and sapling in a spruce-fir forest in the Changbai Mountains area in northeastern China.Acta Ecologica Sinica,34,7311-7319.[杨华,李艳丽,沈林,亢新刚,岳刚,王妍(2014).长白山云冷杉林幼苗幼树空间分布格局及其更新特征.生态学报,34,7311-7319.]
    Yang XD,Yan ER,Zhang ZH,Sun BW,Huang HX,Arshad A,Ma WJ,Shi QR(2013).Tree architecture of overlapping species among successional stages in evergreen broadleaved forests in Tiantong region,Zhejiang Province,China.Chinese Journal of Plant Ecology,37,611-619.[杨晓东,阎恩荣,张志浩,孙宝伟,黄海侠,Arshad A,马文济,史青茹(2013).浙江天童常绿阔叶林演替阶段共有种的树木构型.植物生态学报,37,611-619.]
    Zhang JT(1998).Analysis of spatial point pattern for plant species.Acta Phytocologica Sinica,22,57-62.[张金屯(1998).植物种群空间分布的点格局分析.植物生态学报,22,57-62.]
    Zhang PJ,Qing H,Zhang L,Xu YD,Mu L,Ye RH,Qiu X,Chang H,Shen HH,Yang J(2017).Population structure and spatial pattern of Caragana tibetica communities in Nei Mongol shrub-encroached grassland.Chinese Journal of Plant Ecology,41,165-174.[张璞进,清华,张雷,徐延达,木兰,晔薷罕,邱晓,常虹,沈海花,杨劼(2017).内蒙古灌丛化草原毛刺锦鸡儿种群结构和空间分布格局.植物生态学报,41,165-174.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700