基于模拟退火优化的海马齿生长参数确定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Parameter determination of Sesuvium portulacastrum based on simulated annealing
  • 作者:刘好真 ; 焦海峰 ; 史西志 ; 王一农 ; 尤仲杰
  • 英文作者:Liu Haozhen;Jiao Haifeng;Shi Xizhi;Wang Yinong;You Zhongjie;School of Marine Science, Ningbo University;Ningbo Academy of Oceanology and Fisheries;
  • 关键词:海马齿 ; 生长模型 ; Morris灵敏度分析 ; 模拟退火算法 ; 参数确定
  • 英文关键词:Sesuvium portulacastrum;;growth model;;Morris sensitivity analysis;;simulated annealing algorithm;;parameter determination
  • 中文刊名:SEAC
  • 机构:宁波大学海洋学院;宁波市海洋与渔业研究院;
  • 出版日期:2019-04-10
  • 出版单位:海洋学报
  • 年:2019
  • 期:v.41
  • 基金:公益性行业(农业)科研专项(201303047);; 宁波市科技局攻关项目(2014C10018)
  • 语种:中文;
  • 页:SEAC201904010
  • 页数:10
  • CN:04
  • ISSN:11-2055/P
  • 分类号:113-122
摘要
为确定海马齿生长的相关参数,对海马齿进行了室内水培实验,连续监测海马齿生长及生态因子状况。考虑营养盐循环,基于一级衰减模式构建海马齿生长模型。使用基于单纯形实验设计的Morris法进行全局定性灵敏度分析发现,对所有状态变量均敏感的参数为氨氮硝化率和有机氮矿化常数,表明所构建模型主要由氮的循环系统所支配;最适光照是对海马齿生长最为灵敏的参数,光照是影响海马齿生长的最主要生态因子。以各状态变量的最大均方误差为代价函数,使用模拟退火算法对模型参数进行优化及确定,选取多指标对模型进行评估。结果表明,模拟值可以很好地拟合实测值,最大平均绝对百分误差为5.023%;对参数分析发现,海马齿对硝酸盐氮的吸收具有一定的偏向性,对磷具有较高的耐受性;海马齿生长速率较快,具有一定的开发前景。
        In order to determine the parameters related to the growth of Sesuvium portulacastrum, hydroponic experiments are performed on the S. portulacastrum to continuously monitor the growth of S. portulacastrum and the status of ecological factors. Considering nutrient cycling, the model of S. portulacastrum is constructed based on first order attenuation pattern. The global qualitative sensitivity analysis using Morris method based on the simplex experimental design shows that the parameters sensitive to all state variables are ammonia nitrogen nitrification rate and mineralization constant of organic nitrogen, indicating that the model is mainly dominated by the nitrogen circulation system. The optimum illumination is the most sensitive parameter for the growth of S. portulacastrum, and light is the most important ecological factor that affects the growth of the S. portulacastrum. Based on the minimum mean squared error, the simulated annealing algorithm is used to optimize and determine the parameters of the model, and multiple indicators are selected to evaluate the model. The results show that the simulated values can be well fitted with the measured values, and the maximum mean absolute percentage error is 5.023%. It is found that the absorption of the S. portulacastrum to NO_3-N has a certain bias to the parameter analysis, and it has high tolerance to phosphorus. The growth rate of S. portulacastrum is fast, and it has a certain development prospect.
引文
[1] Wang Dongyang, Wang Haiyan, Han Bing, et al. Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum[J]. Plant Physiology and Biochemistry, 2012, 51: 53-62.
    [2] Lokhande V H, Nikam T D, Penna S. Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L.[J]. Plant Cell, Tissue and Organ Culture, 2010, 102(1): 17-25.
    [3] 杨成龙, 段瑞军, 李瑞梅, 等. 盐生植物海马齿耐盐的生理特性[J]. 生态学报, 2010, 30(17): 4617-4627. Yang Chenglong, Duan Ruijun, Li Ruimei, et al. The physiological characteristics of salt-tolerance in Sesuvium portulacastrum L.[J]. Acta Ecologica Sinica, 2010, 30(17): 4617-4627.
    [4] Rabhi M, Ferchichi S, Jouini J, et al. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop[J]. Bioresource Technology, 2010, 101(17): 6822-6828.
    [5] Ventura Y, Myrzabayeva M, Alikulov Z, et al. Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte[J]. AoB Plants, 2014, 6: plu053.
    [6] 窦碧霞, 黄建荣, 李连春, 等. 海马齿对海水养殖系统中氮、磷的移除效果研究[J]. 水生态学杂志, 2011, 32(5): 94-99. Dou Bixia, Huang Jianrong, Li Lianchun, et al. Research on effects of nutrient and phosphate removal from marine aquaculture system by Sesuvium portulacastrum[J]. Journal of Hydroecology, 2011, 32(5): 94-99.
    [7] 岳晓彩, 饶科, 熊安安, 等. 生态浮床原位修复对海水养殖池塘底栖动物群落结构的影响[J]. 水生态学杂志, 2014, 35(1): 22-27. Yue Xiaocai, Rao Ke, Xiong An’an, et al. Effect of ecological floating bed on benthos community structure in a mariculture pond[J]. Journal of Hydroecology, 2014, 35(1): 22-27.
    [8] 袁星, 林彦彦, 黄建荣, 等. 海马齿生态浮床对海水养殖池塘的修复效果[J]. 安徽农业科学, 2016, 44(14): 69-75, 96. Yuan Xing, Lin Yanyan, Huang Jianrong, et al. Restoration of Sesuvium portulacastrum ecological floating bed to mariculture pond[J]. Journal of Anhui Agricultural Science, 2016, 44(14): 69-75, 96.
    [9] Wali M, Martos S, Pérez-Martín L, et al. Cadmium hampers salt tolerance of Sesuvium portulacastrum[J]. Plant Physiology and Biochemistry, 2017, 115: 390-399.
    [10] Yi Xiaoping, Sun Yong, Yang Qian, et al. Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance[J]. Journal of Proteomics, 2014, 99: 84-100.
    [11] Fourati E, Wali M, Vogel-Miku? K, et al. Nickel tolerance, accumulation and subcellular distribution in the halophytes Sesuvium portulacastrum and Cakile maritima[J]. Plant Physiology and Biochemistry, 2016, 108: 295-303.
    [12] 刘永志, 沈程程, 石洪华, 等. 基于全局灵敏度分析的浒苔生长影响参数研究[J]. 生态学报, 2016, 36(13): 4178-4186. Liu Yongzhi, Shen Chengcheng, Shi Honghua, et al. Factors influencing Ulva prolifera growth revealed by model based on global sensitivity analysis[J]. Acta Ecologica Sinica, 2016, 36(13): 4178-4186.
    [13] 何立杰, 何洪林, 任小丽, 等. 基于贝叶斯机器学习的生态模型参数优化方法研究[J]. 地球信息科学, 2017, 19(10): 1270-1278. He Lijie, He Honglin, Ren Xiaoli, et al. Parameters optimization method of ecosystem model based on Bayesian Machine Learning[J]. Journal of Geo-information Science, 2017, 19(10): 1270-1278.
    [14] J?rgensen S E. An improved parameter estimation procedure in lake modelling[J]. Lakes & Reservoirs: Research and Management, 1998, 3(2): 139-142.
    [15] 万振文, 袁业立, 乔方利. 海洋赤潮生态模型参数优化研究[J]. 海洋与湖沼, 2000, 31(2): 205-209. Wan Zhenwen, Yuan Yeli, Qiao Fangli. Study on optimization of the parameters of a marine ecosystem dynamics model for red tide[J]. Oceanologia et Limnologia Sinica, 2000, 31(2): 205-209.
    [16] 刘毅, 陈吉宁, 杜鹏飞. 环境模型参数优化方法的比较[J]. 环境科学, 2002, 23(2): 1-6. Liu Yi, Chen Jining, Du Pengfei. Comparison of parameter optimization algorithms for environmental model[J]. Environmental Science, 2002, 23(2): 1-6.
    [17] 张廷龙, 孙睿, 胡波, 等. 利用模拟退火算法优化Biome-BGC模型参数[J]. 生态学杂志, 2011, 30(2): 408-414. Zhang Tinglong, Sun Rui, Hu Bo, et al. Using simulated annealing algorithm to optimize the parameters of Biome-BGC model[J]. Chinese Journal of Ecology, 2011, 30(2): 408-414.
    [18] 逄勇, 丁玲, 高光. 基于生态槽实验的藻类生长参数确定[J]. 环境科学, 2005, 26(3): 78-82. Pang Yong, Ding Ling, Gao Guang. Parameter determination of Algae growth based on ecological tank experiment[J]. Environmental Science, 2005, 26(3): 78-82.
    [19] Kanna M, Matsumura Y. Applicability of Monod equation to growth curves of various microorganisms[J]. Journal of the Japan Petroleum Institute, 2012, 55(4): 236-240.
    [20] Steele J H. Environmental control of photosynthesis in the sea[J]. Limnology and Oceanography, 1962, 7(2): 137-150.
    [21] 沈艳, 张丽玲, 张琦智, 等. 基于三阶和四阶龙格库塔法的GM(1,1)模型优化及应用[J]. 数学的实践与认识, 2016, 46(7): 168-173. Shen Yan, Zhang Liling, Zhang Qizhi, et al. Optimization and its application for GM(1,1) model based on the third and the fourth order Runge-Kutta method[J]. Mathematics in Practice and Theory, 2016, 46(7): 168-173.
    [22] Mathews J H. Computer derivations of numerical differentiation formulae[J]. International Journal of Mathematical Education in Science and Technology, 2003, 34(2): 280-287.
    [23] 徐崇刚, 胡远满, 常禹, 等. 生态模型的灵敏度分析[J]. 应用生态学报, 2004, 15(6): 1056-1062. Xu Chonggang, Hu Yuanman, Chang Yu, et al. Sensitivity analysis in ecological modeling[J]. Chinese Journal of Applied Ecology, 2004, 15(6): 1056-1062.
    [24] Morris D J, Speirs D C, Cameron A I, et al. Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: factors affecting the biomass of fish and benthos[J]. Ecological Modelling, 2014, 273: 251-263.
    [25] Morris M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2): 161-174.
    [26] Cossarini G, Solidoro C. Global sensitivity analysis of a trophodynamic model of the Gulf of Trieste[J]. Ecological Modelling, 2008, 212(1/2): 16-27.
    [27] Pujol G. Simplex-based screening designs for estimating metamodels[J]. Reliability Engineering & System Safety, 2009, 94(7): 1156-1160.
    [28] J?rgensen S E, Patten B C, Stra?kraba M. Ecosystems emerging: 4. Growth[J]. Ecological Modelling, 2000, 126(2/3): 249-284.
    [29] 巫晓杰, 申玉春, 叶宁, 等. 海马齿对氮、磷吸收利用速率的初步研究[J]. 中国农学通报, 2011, 27(20): 92-96. Wu Xiaojie, Shen Yuchun, Ye Ning, et al. The preliminary study of Sesuvium portulacastrum on the nitrogen and phosphorus absorption rate[J]. Chinese Agricultural Science Bulletin, 2011, 27(20): 92-96.
    [30] Zhang Meng, Cao Te, Ni Leyi, et al. Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses[J]. Environmental and Experimental Botany, 2010, 68(1): 44-55.
    [31] 邹丽莎, 聂泽宇, 姚笑颜, 等. 富营养化水体中光照对沉水植物的影响研究进展[J]. 应用生态学报, 2013, 24(7): 2073-2080. Zou Lisha, Nie Zeyu, Yao Xiaoyan, et al. Effects of light on submerged macrophytes in eutrophic water: research progress[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 2073-2080.
    [32] Abreu M H, Pereira R, Buschmann A H, et al. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium[J]. Journal of Experimental Marine Biology and Ecology, 2011, 407(2): 190-199.
    [33] Hurd C L, Berges J A, Osborne J, et al. An in vitro nitrate reductase assay for marine macroalgae: optimization and characterization of the enzyme for Fucus gardneri (phaeophyta) [J]. Journal of Phycology, 2008, 31(5): 835-843.
    [34] Ahn O, Petrell R J, Harrison P J. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm[J]. Journal of Applied Phycology, 1998, 10(4): 333-340.
    [35] Zheng Wei, Shi Honghua, Fang Guohong, et al. Global sensitivity analysis of a marine ecosystem dynamic model of the Sanggou Bay[J]. Ecological Modelling, 2012, 247: 83-94.
    [36] Lokhande V H, Nikam T D, Suprasanna P. Sesuvium portulacastrum (L.) L. a promising halophyte: cultivation, utilization and distribution in India[J]. Genetic Resources and Crop Evolution, 2009, 56(5): 741-747.
    [37] Magwa M L, Gundidza M, Gweru N, et al. Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum[J]. Journal of Ethnopharmacology, 2006, 103(1): 85-89.
    [38] 曾碧健, 窦碧霞, 黎祖福, 等. 海洋盐生植物海马齿(Sesuvium portulacastrum)对环境盐度胁迫的耐受性及营养价值综合评价[J]. 海洋与湖沼, 2017, 48(3): 568-575. Zeng Bijian, Dou Bixia, Li Zufu, et al. Salt tolerance of environmental salinity stress and comprehensive evaluation of nutritional value of Sesuvium portulacastrum, an important halophyte[J]. Oceanologia et Limnologia Sinica, 2017, 48(3): 568-575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700