基于CFD-DEM耦合的磨粒流微小孔加工数值分析与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical analysis and experiment of abrasive flow machining microhole structure based on CFD-DEM coupling
  • 作者:李俊烨 ; 苏宁宁 ; 胡敬磊 ; 杨兆军 ; 盛亮 ; 张心明
  • 英文作者:Li Junye;Su Ningning;Hu Jinglei;Yang Zhaojun;Sheng Liang;Zhang Xinming;College of Mechanical and Electric Engineering, Changchun University of Science and Technology;College of Mechanical and Electric Engineering, Jilin University;
  • 关键词:数值分析 ; 试验 ; CFD-DEM耦合 ; 磨粒流加工 ; 材料去除
  • 英文关键词:numerical analysis;;experiments;;CFD-DEM coupling;;abrasive flow machining;;material removal
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:长春理工大学机电工程学院;吉林大学机械科学与工程学院;
  • 出版日期:2018-08-22
  • 出版单位:农业工程学报
  • 年:2018
  • 期:v.34;No.343
  • 基金:国家自然科学基金项目(51206011);; 吉林省科技发展计划项目(20160101270JC,20170204064GX)
  • 语种:中文;
  • 页:NYGU201816011
  • 页数:10
  • CN:16
  • ISSN:11-2047/S
  • 分类号:88-96+307
摘要
由于当前具有微小孔的结构等零部件加工难度大,精度要求高,传统加工方法无法满足现有的加工精度要求,该文采用一种软性加工方法—磨粒流加工技术,实现微小孔结构精密加工。采用CFD(computational fluid dynamics)和DEM(discrete element method)相结合的方法对磨粒流加工过程进行数值分析。在数值分析过程中,考虑颗粒对壁面的碰撞作用,对不同入口速度条件下的流体和颗粒的分布状态进行对比分析,揭示磨粒流微切削作用行为,通过对材料去除机理的分析揭示颗粒对壁面的作用规律。数值模拟结果表明:随着入口速度的增大,颗粒与零件表面的摩擦与碰撞作用更为剧烈,颗粒动能转化为切削能,提高了材料的去除率;当颗粒碰撞应力小于材料极限应力时,材料只发生塑性变形,当碰撞应力大于材料极限应力时,才会发生材料去除。试验结果表明:经磨粒流加工的表面粗糙度Ra值由2.03μm降低到0.65μm,研究结果可为后续研究颗粒碰撞和颗粒微切削提供一定借鉴价值。
        Abrasive flow machining method is a new precision processing method. Unlike the traditonal mechanical processing, the biggest feature of this technology is its polishing liquid. Because of the rheological properties of the polishing liquid, it can enter into any complex and tiny flow channels without limitation. In addition, according to the size and structure of the machined parts, the suitable polishing fluid can be simply and effectively configured. In the abrasive flow machining process, the inlet velocity is the main parameter affecting the processing efficiency and accuracy of the abrasive flow. Therefore, the inlet velocity is selected as the processing parameter to study the processing effect of the abrasive flow on the part. At present, most of the research content about abrasive flow processing is mainly focused on the machine parameters and abrasive configuration, while the particles decisive role in the whole process was ignoring. The essence of abrasive flow processing is the shear, collision, and friction between the innumerable particles and the processed surface,,so it is great significance to study the distribution and mechanical properties of particles. Based on the above background, the micro-component dispensing head is selected as the simulation and test object in this paper. With the abrasive flow machining technology and the combination of CFD( computational fluid dynamics) and DEM(discrete element method), the fluid simulation software FLUENT was used to perform the numerical analysis of the abrasive flow machining process, and the distribution of fluids and particles during processing were discussed, the distribution of fluids and particles under different inlet velocity conditions was compared and analyzed, the micro-cutting behavior of the abrasive flow machining was revealed. The collision model of the particles impact the processed surface was established. The effect of the abrasive flow on processed surface and the material removal mechanism were clarified. Numerical simulations showed that, with the increase of the inlet velocity, the effects of fluids and particles on the processed surface were enhanced, the friction and collision between the particles and the surface were severer, more kinetic energy of the particles was converted into cutting energy, and the removal rate of the material was improved. The collision model showed that the removal of the surface material was achieved by continuous impact and shear of the particles. The NT100 grating measuring instrument and scanning electron microscope were used to detect the surface topography after the abrasive flow processing. The test results showed that the surface roughness decreased from 2.03μm to 0.65μm., the surface roughness was significantly lower than that before processing, and the surface quality was obviously improved. The study provides a reference for further research on abrasive flow processing and micro-cutting.
引文
[1]丁金福,刘润之,张克华,等.磨粒流精密光整加工的微切削机理[J].光学精密工程,2014,22(12):3324-3331.Ding Jinfu,Liu Runzhi,Zhang Kehua,et al.Micro cutting mechanism of abrasive flow precision machining[J].Optics and Precision Engineering,2014,22(12):3324-3331.(in Chinese with English abstract)
    [2]李琛,计时鸣,谭大鹏,等.软性磨粒流加工特性及近壁区域微切削机理[J].机械工程学报,2014,50(9):161-168.Li Chen,Ji Shiming,Tan Dapeng,et al.Study of near wall area micro-cutting mechanism and finishing characteristics for softness abrasive flow finishing[J].Journal of Mechanical Engineering,2014,50(9):161-168.(in Chinese with English abstract)
    [3]李俊烨,乔泽民,杨兆军,等.介观尺度下磨料浓度对磨粒流加工质量的影响[J].吉林大学学报(工学版),2017,47(3):837-843.Li Junye,Qiao Zemin,Yang Zhaojun,et al.Influence of abrasive concentration on processing quality of abrasive flow in mesoscopic scale[J].Journal of Jilin University(Engineering and Technology Edition),2017,47(3):837-843.(in Chinese with English abstract)
    [4]Gorana V K,Jain V K,Lal G K.Forces prediction during material deformation in abrasive flow machining[J].Wear,2006,260(1):128-139.
    [5]Jain V K,Kumar R,Dixit P M,et al.Investigations into abrasive flow finishing of complex workpieces using FEM[J].Wear,2009,267(1):71-80.
    [6]李俊烨,卫丽丽,张心明,等.介观尺度下磨粒流抛光温度对发动机喷油嘴质量影响研究[J].兵工学报,2017,38(10):2010-2018.Li Junye,Wei Lili,Zhang Xinming,et al.Impact of abrasive flow polishing temperature on nozzle quality under mesoscopic scale[J].Acta Armamentarii,2017,38(10):2010-2018.(in Chinese with English abstract)
    [7]李俊烨,董坤,王兴华,等.颗粒微切削表面创成的分子动力学仿真研究[J].机械工程学报,2016,52(17):94-104.Li Junye,Dong Kun,Wang Xinghua,et al.Molecular dynamics simulation research into generative mechanism of particles micro-cutting surface[J].Journal of Mechanical Engineering,2016,52(17):94-104.(in Chinese with English abstract)
    [8]李俊烨,卫丽丽,尹延路,等.磨粒流研抛伺服阀阀芯喷嘴的冲蚀磨损分析[J].光学精密工程,2017,25(07):1857-1865.Li Junye,Wei Lili,Yin Yanlu,et al.Analysis to erosive wear of abrasive flow polishing servo valve core nozzle[J].Optics and Precision Engineering,2017,25(7):1857-1865.(in Chinese with English abstract)
    [9]计时鸣,陈凯,谭大鹏,等.超声空化对软性磨粒流切削效率和质量的影响[J].农业工程学报,2017,33(12):82-90.Ji Shiming,Chen Kai,Tan Dapeng,et al.Effect of ultrasonic cavitation on maching efficiency and quality of soft abrasive flow[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(12):82-90.(in Chinese with English abstract)
    [10]Uhlmann E,Schmiedel C,Wendler J.CFD Simulation of the Abrasive Flow Machining Process[J].Procedia Cirp,2015,31:209-214.
    [11]Butola R,Jain R,Bhangadia P,et al.Optimization to the parameters of abrasive flow machining by Taguchi method[J].Materials Today Proceedings,2018,5(2):4720-4729.
    [12]周迪锋,刘冬玉.耦合DEM-CFD法双入口磨粒流动力学模拟及加工试验[J].机电工程,2013,30(12):1467-1471.Zhou Difeng,Liu Dongyu.Coupling DEM-CFD double inlet abrasive flow dynamics of numerical simulation and test device[J].Journal of Mechanical&Electrical Engineering,2013,30(12):1467-1471.(in Chinese with English abstract)
    [13]计时鸣,葛江勤,高涛,等.基于CFD-DEM耦合的面约束软性磨粒流加工特性研究[J].机械工程学报,2018,54(5):129-141.Ji Shiming,Ge Jiangqin,Gao Tao,et al.Study on machinability of surface-constrained softness abrasive flow based on CFD-DEM coupled method[J].Journal of Mechanical Engineering,2018,54(5):129-141.(in Chinese with English abstract)
    [14]喻黎明,谭弘,邹小艳,等.基于CFD-DEM耦合的迷宫流道水沙运动数值模拟[J].农业机械学报,2016,47(8):65-71.Yu Liming,Tan Hong,Zou Xiaoyan,et al.Numerical simulation of water and sediment flow in labyrinth channel based on coupled CFD-DEM[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(8):65-71.(in Chinese with English abstract)
    [15]喻黎明,邹小艳,谭弘,等.基于CFD-DEM耦合的水力旋流器水沙运动三维数值模拟[J].农业机械学报,2016,47(1):126-132.Yu Liming,Zou Xiaoyan,Tan Hong,et al.3D Numerical simulation of water and sediment flow in hydrocyclone Based on coupled CFD-DEM[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(1):126-132.(in Chinese with English abstract)
    [16]Kenda J,Duhovnik J,Tav?ar J,et al.Abrasive flow machining applied to plastic gear matrix polishing[J].International Journal of Advanced Manufacturing Technology,2014,71(1/2/3/4):141-151.
    [17]Sushil M,Vinod K,Harmesh K.Experimental investigation and optimization of process parameters of Al/Si C MMCs finished by abrasive flow machining[J].Advanced Manufacturing Processes,2015,30(7):902-911.
    [18]Sankar M R,Jain V K,Ramkumar J.Nano-finishing of cylindrical hard steel tubes using rotational abrasive flow finishing(R-AFF)process[J].International Journal of Advanced Manufacturing Technology,2016,85(9):1-9.
    [19]陈铁牛,郭钟宁,曾柏文,等.激光诱导空泡微孔抛光机理及实验研究[J].中国机械工程,2018,29(3):273-278+285.Chen Tieniu,Guo Zhongning,Zeng Baiwen,et al.Study on micro-hole polishing mechanism and experiments based on laser-induced cavitation bubbles[J].China Mechanical Engineering,2018,29(3):273-278+285.(in Chinese with English abstract)
    [20]刘薇娜,王尹琛,张英芝,等.磨料体积分数对喷油嘴喷孔加工影响分析[J].重庆理工大学学报(自然科学),2018,32(1):81-85.Liu Weina,Wang Yinchen,Zhang Yingzhi,et al.Abrasive flow machining analysis and research of nozzle[J].Journal of Chongqing University of Technology(Natural Science),2018,32(1):81-85.(in Chinese with English abstract)
    [21]李俊烨,胡敬磊,杨兆军,等.离散相磨粒粒径对磨粒流研抛共轨管质量的影响[J].吉林大学学报(工学版),2018,48(2):492-499.Li Junye,Hu Jinglei,Yang Zhaojun,et al.Effect of the size of discrete phase abrasive particles on the abrasive flow polishing quality of common rail pipe[J].Journal of Jilin University(Engineering and Technology Edition),2018,48(2):492-499.(in Chinese with English abstract)
    [22]高航,李世宠,付有志,等.金属增材制造格栅零件磨粒流抛光[J].航空学报,2017,38(10):231-239.Gao Hang,Li Shichong,Fu youzhi,et al.Abrasive flow machining of additively manufactured metal grilling parts[J].Acta Aeronautica Et Astronautica Sinica,2017,38(10):231-239.(in Chinese with English abstract)
    [23]Ji S M,Xiao F Q,Tan D P.A new ultraprecision machining method with softness abrasive flow based on discrete phase model[J].Advanced Materials Research,2010,97-101:3055-3059.
    [24]李俊烨,胡敬磊,董坤,等.固液两相磨粒流研抛工艺优化及质量影响[J].光学精密工程,2017,25(06):1534-1546Li Junye,Hu Jinglei,Dong Kun,et al.Technological parameter optimization and quality effects on solid-liquid phase abrasive flow polishing[J].Optics and Precision Engineering,2017,25(6):1534-1546.(in Chinese with English abstract)
    [25]唐学林,余欣,任松长,等.固-液两相流体动力学及其在水力机械中的应用[M].郑州:黄河水利出版社,2006.
    [26]Jain R K,Jain V K.Specific energy and temperature determination in abrasive flow machining process[J].International Journal of Machine Tools&Manufacture,2001,41(12):1689-1704.
    [27]Jain V K,Adsul S G.Experimental investigations into abrasive flow machining(AFM)[J].International Journal of Machine Tools&Manufacture,2000,40(7):1003-1021.
    [28]李晨光,苏铁熊,张艳岗.珩磨工艺研究发展现状综述[J].煤矿机械,2018,39(3):1-3.
    [29]Kenda J,Pusavec F,Kermouche G,et al.Surface integrity in abrasive flow machining of hardened tool steel AISI D2[J].Procedia Engineering,2011,19(1):172-177.
    [30]Gov K,Eyercioglu O,Cakir M V.Hardness effects on abrasive flow machining[J].Journal of Mechanical Engineering,2013,59(10):626-631.
    [31]计时鸣,李琛,谭大鹏,等.基于Preston方程的软性磨粒流加工特性[J].机械工程学报,2011,47(17):156-163.Ji Shiming,Li Chen,Tan Dapeng,et al.Study on machinability of softness abrasive flow based on preston equation[J].Journal of Mechanical Engineering,2011,47(17):156-163.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700