微生物厌氧呼吸与有机污染水体沉积物修复
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbial anaerobic respiration and remediation of aquatic sediments contaminated by refractory organic pollutants
  • 作者:许玫英 ; 虞志强 ; 杨永刚 ; 陈杏娟 ; 孙国萍 ; 郭俊
  • 英文作者:XU Mei-ying;YU Zhi-qiang;YANG Yong-gang;CHEN Xing-juan;SUN Guo-ping;GUO Jun;Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application,Guangdong Institute of Microbiology;Guangdong Open Laboratory of Applied Microbiology;College of Bioscience and Bioengineering,Jiangxi Agricultural University;
  • 关键词:有机污染水体沉积物 ; 微生物修复 ; 微生物厌氧呼吸 ; 电子传递网络
  • 英文关键词:Aquatic sediment contaminated by refractory organic pollutants;;microbial remediation;;microbial anaerobic respiration;;electron transfer network
  • 中文刊名:WSWX
  • 英文刊名:Journal of Microbiology
  • 机构:广东省微生物研究所广东省菌种保藏与应用重点实验室;省部共建华南应用微生物国家重点实验室;江西农业大学生物科学与工程学院;
  • 出版日期:2017-04-15
  • 出版单位:微生物学杂志
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金项目(51422803,51678163);; 广东省科技攻关项目(2014TX01Z038,2016B070701017,2015B020235011);; 广东省海洋渔业科技与产业发展专项(A201501D01)
  • 语种:中文;
  • 页:WSWX201702018
  • 页数:11
  • CN:02
  • ISSN:21-1186/Q
  • 分类号:7-17
摘要
水体沉积物有机污染是当前全球关注的重要环境问题。微生物具有呼吸和代谢多样性,能以多种污染物作为厌氧呼吸的电子供体或受体,与周围环境中的生物和非生物因素组成代谢网络耦合有机污染物降解转化,是有机污染水体沉积物修复的重要驱动者。本文重点综述了微生物厌氧呼吸、电子传递网络及其对有机污染水体沉积物的修复机制研究进展,并对有机污染水体沉积物微生物修复理论和技术研究的问题和挑战进行了探讨。
        Aquatic sediment contamination by refractory organic pollutants is an urgent environmental issue in the world. Microorganism is an important driver in the remediation of contaminated aquatic sediments. Due to the flexibilities of microorganism in respiration and metabolism,microorganism can use a variety of contaminants as electron donors or acceptors in anaerobic respiration and construct a metabolic network with the biotic and abiotic factors in its surrounding environment coupling the degradation and transformation of refractory organic pollutants. In this paper,we review recent research progress in microbial anaerobic respiration,electron transfer network,and their remediation mechanisms for aquatic sediments contaminated by refractory organic pollutants. The prospects and challenges in developing the theories and technologies for microbial remediation of contaminated aquatic sediments are also discussed.
引文
[1]Roberts D A.Causes and ecological effects of resuspended contaminated sediments(RCS)in marine environments[J].Environment International,2012,40:230-243.
    [2]Castelle C J,Hug L A,Wrighton K C,et al.Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment[J].Nature communications,2013,4:2120.
    [3]Newton A.Biogeochemistry:Microbial flexibility[J].Nature Geoscience,2014,7(10):696.
    [4]Meckenstock R U,Elsner M,Griebler C,et al.Biodegradation:Updating the concepts of control for microbial cleanup in contaminated aquifers[J].Environmental Science&Technology,2015,49(12):7073-7081.
    [5]Little A E F,Robinson C J,Peterson S B,et al.Rules of engagement:interspecies interactions that regulate microbial communities[J].Annual Review of Microbiology,2008,62(1):375-401.
    [6]Lovley D R.Happy together:microbial communities that hook up to swap electrons[J].The ISME Journal,2017,11(2):327-336.
    [7]Raes J,Bork P.Molecular eco-systems biology:towards an understanding of community function[J].Nature Reviews Microbiology,2008,6(9):693-699.
    [8]Kim S J,Park S J,Cha I T,et al.Metabolic versatility of toluene-degrading,iron-reducing bacteria in tidal flat sediment,characterized by stable isotope probing-based metagenomic analysis[J].Environmental Microbiology,2014,16(1):189-204.
    [9]Rothermich M M,Hayes L A,Lovley D R.Anaerobic,sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment[J].Environmental Science&Technology,2002,36(22):4811-4817.
    [10]Xu M,Zhang Q,Xia C,et al.Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments[J].The ISME Journal,2014,8(9):1932-1944.
    [11]Lovley D R,Holmes D E,Nevin K P.Dissimilatory Fe(Ⅲ)and Mn(Ⅳ)reduction[J].Advances in Microbial Physiology,2004,49:219-286.
    [12]Mihelcic J R,Luthy R G.Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soilwater systems[J].Applied&Environmental Microbiology,1988,54(5):1188-1198.
    [13]Chang B V,Chang J S,Yuan S Y.Degradation of phenanthrene in river sediment under nitrate-reducing conditions[J].Bulletin of Environmental Contamination and Toxicology,2001,67(6):898-905.
    [14]Coates J D,Chakraborty R,Lack J G,et al.Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas[J].Nature,2001,411(6841):1039-1043.
    [15]Yang X,Ye J,Lyu L,et al.Anaerobic biodegradation of pyrene by Paracoccus denitrificans under various nitrate/nitrite-reducing conditions[J].Water,Air,&Soil Pollution,2013,224(5):1578.
    [16]Perez-Jimenez J R,Kerkhof L J.Phylogeography of sulfate-reducing bacteria among disturbed sediments,disclosed by analysis of the dissimilatory sulfite reductase genes(dsr AB)[J].Applied&Environmental Microbiology,2005,71(2):1004-1011.
    [17]Wang Z,Yang Y,Dai Y,et al.Anaerobic biodegradation of nonylphenol in river sediment under nitrate-or sulfate-reducing conditions and associated bacterial community[J].Journal of Hazardous Materials,2015,286:306-314.
    [18]Lei L,Khodadoust A P,Suidan M T,et al.Biodegradation of sediment-bound PAHs in field-contaminated sediment[J].Water Research,2005,39(2):349-361.
    [19]Yuan S Y,Chang B V.Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan[J].Journal of Environmental Science and Health Part B,2007,42(1):63-69
    [20]Hong Y,Xu M,Guo J,et al.Respiration and growth of Shewanella decolorationis S 12 with an azo compound as the sole electron acceptor[J].Applied&Environmental Microbiology,2007,73(1):64-72.
    [21]Frindt B,Mattusch J,Reemtsma T,et al.Multidimensional monitoring of anaerobic/aerobic azo dye based wastewater treatments by hyphenated UPLC-ICP-MS/ESI-Q-TOF-MS techniques[J].Environmental Science and Pollution Research,2017,24(12):10929-10938.
    [22]Shah B,Jain K,Jiyani H,et al.Microaerophilic symmetric reductive cleavage of reactive azo dye-Remazole Brilliant Violet5R by Consortium VIE6:Community synergism[J].Applied Biochemistry and Biotechnology,2016,180(6):1029-1042.
    [23]Imran M,Negm F,Hussain S,et al.Characterization and purification of membrane-bound azoreductase from azo dye degrading Shewanella sp.strain IFN4[J].CLEAN-Soil,Air,Water,2016,44(11):1523-1530.
    [24]Shabbir S,Faheem M,Ali N,et al.Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth[J].Bioresource Technology,2017,225:395-401.
    [25]Schumacher W,Holliger C.The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in“Dehalobacter restrictus”[J].Journal of Bacteriology,1996,178(8):2328-2333.
    [26]Manchester MJ,Hug LA,Zarek M,et al.Discovery of a transdichloroethene-respiring Dehalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium[J].Applied and Environmental Microbiology,2012,78(15):5280-5287.
    [27]Yun H,Liang B,Qiu J,et al.Functional characterization of a novel amidase involved in biotransformation of triclocarban and its dehalogenated congeners in Ochrobactrum sp.TCC-2[J].Environmental Science&Technology,2017,51(1):291-300.
    [28]Kublik A,Deobald D,Hartwig S,et al.Identification of a multiprotein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement[J].Environmental Microbiology,2016,18(9):3044-3056.
    [29]Zhu C,Sun G,Chen X,et al.Lysinibacillus varians sp.nov.,an endospore-forming bacterium with a filament-to-rod cell cycle[J].International Journal of Systematic and Evolutionary Microbiology,2014,64(11):3644-3649.
    [30]Zhu C,Sun G,Zhao G,et al.Complete genome sequence of Lysinibacillus varians GY32,a bacterium with filament-to-rod cell cycle[J].FEMS Microbiology Letters,2015,362(1):1-3.
    [31]Chen X,Wang H,Xu J,et al.Sphingobium hydrophobicum sp.nov.,a hydrophobic bacterium isolated from electronic-wastecontaminated sediment[J].International Journal of Systematic and Evolutionary Microbiology,2016,66(10):3912-3916.
    [32]Kr?ger A.Bacterial electron transport to fumarate[J].Diversity of Bacterial Respiratory Systems,1980,2:1-17.
    [33]Kr?ger A,Dorrer E,Winkler E.The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes[J].Biochimica et Biophysica Acta(BBA)-Bioenergetics,1980,589(1):118-136.
    [34]Kr?ger A,Unden G.The function of menaquinone in bacterial electron transport[J].Coenzyme Q biochemistry,bioenergetics and clinical applications of ubiquinone.John Wiley&Sons,Chichester,United Kingdom,1985:285-300.
    [35]Go?i-Urriza M,Corsellis Y,Lanceleur L,et al.Relationships between bacterial energetic metabolism,mercury methylation potential,and hgc A/hgc B gene expression in Desulfovibrio dechloroacetivorans Ber Oc1[J].Environmental Science and Pollution Research,2015,22(18):13764-13771.
    [36]Lin X,Handley KM,Gilbert JA,et al.Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat[J].The ISME Journal,2015,9(12):2740-2744.
    [37]Kuwahara H,Yuki M,Izawa K,et al.Genome of'Ca.Desulfovibrio trichonymphae’,an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut[J].ISME Journal,2017,11(3):766-776.
    [38]Gao T,Ju L,Yin J,et al.Positive regulation of the Shewanella oneidensis Omp S38,a major porin facilitating anaerobic respiration,by Crp and Fur[J].Scientific Reports,2015,5:14263.
    [39]Lorenzen J,Steinwachs S,Unden G.DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes[J].Archives of Microbiology,1994,162(4):277-281.
    [40]Kern M,Simon J.Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate,nitric oxide or nitrous oxide in Wolinella succinogenes[J].Environmental Microbiology,2016,18(4):810-814.
    [41]Gralnick J A,Vali H,Lies D P,et al.Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(12):4669-4674.
    [42]Faber F,Thiennimitr P,Spiga L,et al.Respiration of microbiota-derived 1,2-propanediol drives Salmonella expansion during colitis[J].PLo S Pathogens,2017,13(1):e1006129.
    [43]Lopez CA,Miller BM,Rivera-Chávez F,et al.Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration[J].Science,2016,353(6305):1249-1253.
    [44]Lovley DR,Coates JD,Blunt-Harris EL,et al.Humic substances as electron acceptors for microbial respiration[J].Nature,1996,382(6590):445.
    [45]Ishizaki S,Terada K,Miyake H,et al.Impact of anodic respiration on biopolymer production and consequent membrane fouling[J].Environmental Science&Technology,2016,50(17):9515-9523.
    [46]Dang Y,Lei Y,Liu Z,et al.Impact of fulvic acids on biomethanogenic treatment of municipal solid waste incineration leachate[J].Water Research,2016,106:71-78.
    [47]Xi B,Zhao X,He X,et al.Successions and diversity of humicreducing microorganisms and their association with physicalchemical parameters during composting[J].Bioresource Technology,2016,219:204-211.
    [48]许志诚,洪义国,罗微,等.中国希瓦氏菌D14T的厌氧腐殖质呼吸[J].微生物学报,2006,46(6):973-978.
    [49]Lie TJ,Pitta T,Leadbetter ER,et al.Sulfonates:novel electron acceptors in anaerobic respiration[J].Archives of Microbiology,1996,166(3):204-210.
    [50]Duarte ICS,Oliveira LL,Saavedra NK,et al.Treatment of linear alkylbenzene sulfonate in a horizontal anaerobic immobilized biomass reactor[J].Bioresource Technology,2010,101(2):606-612.
    [51]Okada DY,Delforno TP,Esteves AS,et al.Optimization of linear alkylbenzene sulfonate(LAS)degradation in UASB reactors by varying bioavailability of LAS,hydraulic retention time and specific organic load rate[J].Bioresource Technology,2013,128:125-133.
    [52]Laue H,Denger K,Cook AM.Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU[J].Applied and Environmental Microbiology,1997,63(5):2016-2021.
    [53]Chen X,Xu M,Wei J,et al.Two different electron transfer pathways may involve in azoreduction in Shewanella decolorationis S12[J].Applied Microbiology and Biotechnology,2010,86(2):743-751.
    [54]Wang B,Xu M,Sun G.Extracellular respiration of different amounts azo dye by Shewanella decolorationis S12 and comparative analysis of the membrane proteome[J].International Biodeterioration&Biodegradation,2010,64(4):274-280.
    [55]Liu F,Xu M,Chen X,et al.Novel strategy for tracking the microbial degradation of azo dyes with different polarities in living cells[J].Environmental Science&Technology,2015,49(19):11356-11362.
    [56]Wang B,Xu M,Sun G.Comparative analysis of membranous proteomics of Shewanella decolorationis S12 grown with azo compound or Fe(Ⅲ)citrate as sole terminal electron acceptor[J].Applied Microbiology and Biotechnology,2010,86(5):1513-1523.
    [57]Chen X,Sun G,Xu M.Role of iron in azoreduction by resting cells of Shewanella decolorationis S12[J].Journal of Applied Microbiology,2011,110(2):580-586.
    [58]Qu R,Liu J,Li C,et al.Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids[J].Water Research,2016,104:34-43.
    [59]Wang Y,Vestergren R,Shi Y,et al.Identification,tissue distribution,and bioaccumulation potential of cyclic perfluorinated sulfonic acids isomers in an airport impacted ecosystem[J].Environmental Science&Technology,2016,50(20):10923-10932.
    [60]De Weerd K A,Mandelco L,Tanner R S,et al.Desulfomonile tiedjei gen.nov.and sp.nov.,a novel anaerobic,dehalogenating,sulfate-reducing bacterium[J].Archives of Microbiology,1990,154(1):23-30.
    [61]Louie T M,Mohn W W.Evidence for a Chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1[J].Journal of Bacteriology,1999,181(1):40-46.
    [62]Bommer M,Kunze C,Fesseler J,et al.Structural basis for organohalide respiration[J].Science,2014,346(6208):455-458.
    [63]Vandermeeren P,Herrmann S,Cichocka D,et al.Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge[J].Biodegradation,2014,25(5):757-776.
    [64]Qiu M,Chen X,Deng D,et al.Effects of electron donors on anaerobic microbial debromination of polybrominated diphenyl ethers(PBDEs)[J].Biodegradation,2012,23(3):351-361.
    [65]Xu M,Chen X,Qiu M,et al.Bar-coded pyrosequencing reveals the responses of PBDE-degrading microbial communities to electron donor amendments[J].Plo S one,2012,7(1):e30439.
    [66]Geelhoed J S,Henstra A M,Stams A J M.Carboxydotrophic growth of Geobacter sulfurreducens[J].Applied Microbiology and Biotechnology,2016,100(2):997-1007.
    [67]Richardson DJ.Bacterial respiration:a flexible process for a changing environment[J].Microbiology,2000,146(3):551-571.
    [68]Fredrickson JK,Romine MF,Beliaev AS,et al.Towards environmental systems biology of Shewanella[J].Nature Reviews Microbiology,2008,6(8):592-603.
    [69]Gao H,Yang ZK,Barua S,et al.Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with Nap B as a preferred electron transport protein from Cym Ato Nap A[J].The ISME Journal,2009,3(8):966-976.
    [70]Qi Q,Ito Y,Yoshimatsu K,et al.Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon,Haloferax volcanii[J].Extremophiles,2016,20(1):27-36.
    [71]Richardson DJ,Kelly DJ,Jackson JB,et al.Inhibitory effects of myxothiazol and 2-n-heptyl-4-hydroxyquinoline-N-oxide on the auxiliary electron transport pathways of Rhodobacter capsulatus[J].Archives of Microbiology,1986,146(2):159-165.
    [72]Anesio AM,Granéli W,Aiken GR,et al.Effect of humic substance photodegradation on bacterial growth and respiration in lake water[J].Applied&Environmental Microbiology,2005,71(10):6267-6275.
    [73]Cervantes FJ,Vu-Thi-Thu L,Lettinga G,et al.Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge[J].Applied Microbiology and Biotechnology,2004,64(5):702-711.
    [74]Yu L,Wang S,Tang Q,et al.Enhanced reduction of Fe(Ⅲ)oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate[J].Applied Microbiology and Biotechnology,2016,100(10):4617-4625.
    [75]Li T,Lin D,Li L,et al.The kinetic and thermodynamic sorption and stabilization of multiwalled carbon nanotubes in natural organic matter surrogate solutions:the effect of surrogate molecular weight[J].Environmental Pollution,2014,186:43-49.
    [76]Manceau A,Lemouchi C,Enescu M,et al.Formation of mercury sulfide from Hg(II)-thiolate complexes in natural organic matter[J].Environmental Science&Technology,2015,49(16):9787-9796.
    [77]Wongnate T,Sliwa D,Ginovska B,et al.The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase[J].Science,2016,352(6288):953-958.
    [78]Adrian L,Szewzyk U,Wecke J,et al.Bacterial dehalorespiration with chlorinated benzenes[J].Nature,2000,408(6812):580-583.
    [79]Morris R L,Schmidt T M.Shallow breathing:bacterial life at low O2[J].Nature Reviews Microbiology,2013,11(3):205-212.
    [80]Xu M,He Z,Zhang Q,et al.Responses of aromatic-degrading microbial communities to elevated nitrate in sediments[J].Environmental Science&Technology,2015,49(20):12422-12431.
    [81]Summers Z M,Fogarty H E,Leang C,et al.Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J].Science,2010,330(6009):1413-1415.
    [82]Mc Glynn S E,Chadwick G L,Kempes C P,et al.Single cell activity reveals direct electron transfer in methanotrophic consortia[J].Nature,2015,526(7574):531-535.
    [83]Wegener G,Krukenberg V,Riedel D,et al.Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J].Nature,2015,526(7574):587-590.
    [84]Lovley D R,Baedecker M J,Lonergan D J,et al.Oxidation of aromatic contaminants coupled to microbial iron reduction[J].Nature,1989,339(6222):297-300.
    [85]Zhang T,Gannon S M,Nevin K P,et al.Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor[J].Environmental Microbiology,2010,12(4):1011-1020.
    [86]Yan Z,Song N,Cai H,et al.Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide[J].Journal of Hazardous Materials,2012,199:217-225.
    [87]Wang X,Cai Z,Zhou Q,et al.Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells[J].Biotechnology and Bioengineering,2012,109(2):426-433.
    [88]Gregory K B,Lovley D R.Remediation and recovery of uranium from contaminated subsurface environments with electrodes[J].Environmental Science&Technology,2005,39(22):8943-8947.
    [89]Xia C,Xu M,Liu J,et al.Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity[J].Bioresource Technology,2015,190:420-423.
    [90]Yang Y,Xu M,He Z,et al.Microbial electricity generation enhances decabromodiphenyl ether(BDE-209)degradation[J].Plo S one,2013,8(8):e70686.
    [91]Naudet V,Revil A,Rizzo E,et al.Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations[J].Hydrology and Earth System Sciences Discussions,2004,8(1):8-22.
    [92]Morita M,Malvankar N S,Franks A E,et al.Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J].MBio,2011,2(4):e00159-11.
    [93]Zhuang L,Tang J,Wang Y,et al.Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation[J].Journal of Hazardous Materials,2015,293:37-45.
    [94]Ajo-Franklin C M,Noy A.Crossing over:nanostructures that move electrons and ions across cellular membranes[J].Advanced Materials,2015,27(38):5797-5804.
    [95]Yang Y,Xiang Y,Sun G,et al.Electron acceptor-dependent respiratory and physiological stratifications in biofilms[J].Environmental Science&Technology,2014,49(1):196-202.
    [96]Juwarkar A A,Misra R R,Sharma J K.Recent trends in bioremediation[M].Geomicrobiology and Biogeochemistry.Springer Berlin Heidelberg,2014:81-100.
    [97]Perelo L W.Review:in situ and bioremediation of organic pollutants in aquatic sediments[J].Journal of Hazardous Materials,2010,177(1):81-89.
    [98]Payne R B,Fagervold S K,May H D,et al.Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria[J].Environmental Science&Technology,2013,47(8):3807.
    [99]Payne R B,May H D,Sowers K R.Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium[J].Environmental Science&Technology,2011,45(20):8772.
    [100]周庆,陈杏娟,许玫英.微生物菌剂在难降解有机污染治理的研究进展[J].微生物学通报,2013,40(4):669-676.
    [101]Cunningham J A,Rahme H,Hopkins G D,et al.Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate[J].Environmental Science&Technology,2001,35(8):1663-1670.
    [102]Bach Q,Kim S,Choi S,et al.Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents[J].Journal of Microbiology,2005,43(4):319.
    [103]Lee L K,He J.Reductive debromination of polybrominated diphenyl ethers by anaerobic bacteria from soils and sediments[J].Applied&Environmental Microbiology,2010,76(3):794-802.
    [104]He J,Robrock K R,Alvarez-Cohen L.Microbial reductive debromination of polybrominated diphenyl ethers(PBDEs)[J].Environmental Science&Technology,2006,40(14):4429-4434.
    [105]刘近,邓代永,孙国萍,等.硝酸盐对沉积物中有机物氧化减量及微生物群落结构的影响[J].环境科学,2013,34(7):2847-2854.
    [106]Dolin?ek J,Goldschmidt F,Johnson D R.Synthetic microbial ecology and the dynamic interplay between microbial genotypes[J].FEMS Microbiology Reviews,2016,40(6):961-979.
    [107]Johns N I,Blazejewski T,Gomes A L C,et al.Principles for designing synthetic microbial communities[J].Current Opinion in Microbiology,2016,31:146-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700