Co_3O_4中空纳米球的可控制备及气敏性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Co_3O_4 hollow nanospheres and gas sensing properties
  • 作者:阚侃 ; 王珏 ; 付东 ; Sementsov ; YURII ; 宋美慧 ; 林雨斐 ; 史克英
  • 英文作者:KAN Kan;WANG Jue;FU Dong;Sementsov YURII;SONG Mei-hui;LIN Yu-fei;SHI Ke-ying;Institute of Advanced Technology,Heilongjiang Academy of Sciences;Chuiko Institute of Surface Chemistry,National Academy of Sciences of Ukraine;School of Chemistry and Materials Science,Heilongjiang University;
  • 关键词:四氧化三钴 ; 纳米球 ; 氨气 ; 气体传感器
  • 英文关键词:Co_3O_4;;nanosphere;;NH_3;;gas sensor
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:黑龙江省科学院高技术研究院;乌克兰科学院表面化学研究所;黑龙江大学化学化工与材料学院;
  • 出版日期:2019-01-11 11:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.428
  • 基金:国家国际科技合作专项(2014DFR40480);; 国家自然科学基金项目(51401079)
  • 语种:中文;
  • 页:CLGC201901008
  • 页数:8
  • CN:01
  • ISSN:11-1800/TB
  • 分类号:54-61
摘要
以碳纳米球为模板,采用硬模板法制得多孔Co_3O_4中空纳米球。分别采用SEM、XRD、FTIR、BET和XPS对Co_3O_4纳米球的形貌和结构进行表征。通过改变前驱体浓度和陈化反应时间调控Co_3O_4中空纳米球的空间结构及气敏性能。结果表明:在前驱体浓度为0.1mol/L、陈化时间为48h时,得到的Co_3O_4中空纳米球的表面呈疏松多孔结构。Co_3O_4中空纳米球直径约为500nm,由40nm的Co_3O_4纳米粒子组成。室温下,由该材料组装的气敏传感器对浓度为100×10~(-6)~0.5×10~(-6)的NH_3有较好的气敏性能;对浓度为100×10~(-6)的NH_3响应灵敏度高达155.8%,响应时间为1.3s。该气体传感器对NH_3的最低检测限为0.5×10~(-6)。
        The porous Co_3O_4 hollow nanospheres were synthesized via hard template method by a carbon spheres templated strategy. The morphology and structure of materials were studied by SEM, XRD, FTIR, BET and XPS. The structure and gas sensing properties of Co_3O_4 hollow nanospheres were controlled by changing the concentration of precursor and aging time. The results show that the Co_3O_4 hollow nanospheres with diameter of 500 nm composed by 40 nm Co_3O_4 nanoparticles can be synthesized with 0.1 mol/L precursor and aging for 48 h. The surface of nanospheres is porous structure. The synthesized Co_3O_4 hollow nanospheres sensor have good gas response to 100×10~(-6)-0.5×10~(-6)NH_3 at room temperature. The gas sensitivity to 100×10~(-6)NH_3 reaches 155.8% and the response time is 1.3 s. The limit level of this gas sensor to NH_3 is 0.5×10~(-6).
引文
[1] TANG Y L,LI Z J,MA J Y,et al. Highly sensitive room-temperature surface acoustic wave(SAW) ammonia sensors based on Co3O4/SiO2 composite films[J]. Journal of Hazardous Materials,2014,280(15):127-133.
    [2] 卢少微,冯春林,聂鹏,等. 碳纳米管用于聚合物基复合材料健康监测的研究进展[J]. 航空材料学报,2015,35(2):12-20. LU S W,FENG C L,NIE P,et al. Progress on carbon nanotubes in health monitoring of polymer composites[J]. Journal of Aeronautical Materials,2015,35(2):12-20.
    [3] NAGAI T,TAMURA S,IMANAKA N. Solid electrolyte type ammonia gas sensor based on trivalent aluminum ion conducting solids[J]. Sensors and Actuators B:Chemical,2010,147:735-740.
    [4] YOON J W,LEE J H. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives[J]. Lab on a Chip,2017,17(21):3537-3557.
    [5] 薄小庆,刘唱白,何越,等. 多孔纳米棒氧化锌的制备及其气敏特性[J]. 材料工程,2014(8):86-89. BO X Q,LIU C B,HE Y,et al. Fabrication and gas sensing properties of porous ZnO nanorods[J]. Journal of Materials Engineering,2014(8):86-89.
    [6] LI R,JIANG K,CHEN S,et al. SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors[J]. RSC Advances,2017,7(83):52503-52509.
    [7] KANJWAL M A,SHEIKH F A,BARAKAT N A M,et al. Co3O4-ZnO hierarchical nanostructures by electrospinning and hydrothermal methods[J]. Applied Surface Science,2011,257(18):7975-7981.
    [8] VARGHESE B,MUKHERJEE B,KARTHIK K R G,et al. Electrical and photoresponse properties of Co3O4 nanowires[J]. Journal of Applied Physics,2012,111(10):104306-104311.
    [9] HU L,PENG Q,LI Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion[J]. Journal of the American Chemical Society,2008,130(48):16136-16137.
    [10] SUN C W,RAJASEKHARA S,CHEN Y J,et al. Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties[J]. Chemical Communications,2011,47(48):12852-12854.
    [11] XUA J M,ZHANG J,WANG B B,et al. Shape-regulated synthesis of cobalt oxide and its gas-sensing property[J]. Journal of Alloys and Compounds,2015,619:361-367.
    [12] NGUYEN H,SAFTY S A. Meso- and macroporous Co3O4nanorods for effective VOC gas sensors[J]. The Journal of Physical Chemistry C,2011,115(17):8466-8474.
    [13] PATIL D,PATIL P,SUBRAMANIAN V,et al. Highly sensitive and fast responding CO sensor based on Co3O4 nanorods[J]. Talanta,2010,81(1/2):37-43.
    [14] DENG J N,ZHANG R,WANG L L,et al. Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas[J]. Sensors and Actuators B:Chemical,2015,209:449-455.
    [15] HE T,CHEN D R,JIAO X L,et al. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size[J]. Langmuir,2004,20(19):8404-8408.
    [16] WANG X,YU L,WU X L,et al. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties[J]. The Journal of Physical Chemistry C,2009,113(35):15553-15558.
    [17] KIM M,PHAN V N,LEE K. Exploiting nanoparticles as precursors for novel nanostructure designs and properties[J]. Cryst Eng Comm,2012,14(22):7535-7548.
    [18] NETHRAVATHI C,SEN S,RAVISHANKAR N,et al. Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of α-cobalt hydroxide[J]. The Journal of Physical Chemistry B,2005,109(23):1468-11472.
    [19] LI L,LIU M M,HE S J,et al. Freestanding 3D mesoporous Co3O4@carbon foam nanostructures for ethanol gas sensing[J]. Analytical Chemistry,2014,86(15):7996-8002.
    [20] Lü Y,ZHAN W,HE Y,et al. MOF-templated synthesis of porous Co3O4 concave nanotubes with high specific surface area and their gas sensing properties[J]. ACS Applied Materials Interfaces,2014,6(6):4186-4195.
    [21] WANG L,DENG J,LOU Z,et al. Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices[J]. Journal of Materials Chemistry A:2014,2(26):10022-10028.
    [22] JUNG D,HAN M,LEE G S. Room-temperature gas sensor using carbon nanotube with cobalt oxides[J]. Sensors and Actuators B: Chemical,2014,204:596-601.
    [23] BALOURIA V,SAMANT S,SINGH A,et al. Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films[J]. Sensors and Actuators B:Chemical,2013,176:38-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700