椰子壳生物炭促进餐厨垃圾厌氧消化的响应面优化实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESPONSE SURFACE OPTIMIZATION OF COCONUT SHELL BIOCHAR’S PROMOTING ANAEROBIC DIGESTION OF KITCHEN WASTES
  • 作者:马帅 ; 吴丁山 ; 吴滔 ; 周亮 ; 胡智泉 ; 刘石明 ; 刘冬啟 ; Rune ; Bakke
  • 英文作者:MA Shuai;WU Ding-shan;WU Tao;ZHOU Liang;HU Zhi-quan;LIU Shi-ming;LIU Dong-qi;RUNE Bakke;School of Environmental Science and Engineering,Huazhong University of Science and Technology;Department of Process,Energy and Environmental Technology,University College of Southeast Norway;
  • 关键词:椰子壳生物炭 ; 餐厨垃圾 ; 厌氧消化 ; 响应面法
  • 英文关键词:coconut shell biochar;;kitchen wastes;;anaerobic digestion;;response surface method
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:华中科技大学环境科学与工程学院;Department of Process,Energy and Environmental Technology,University College of Southeast Norway;
  • 出版日期:2019-01-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.247
  • 基金:国家自然科学基金项目(21676112);; 挪威UTFORSK Project(UTF-2016/10042)
  • 语种:中文;
  • 页:HJGC201901040
  • 页数:5
  • CN:01
  • ISSN:11-2097/X
  • 分类号:145-149
摘要
主要研究了椰子壳生物炭添加对餐厨垃圾厌氧消化的影响,选取污泥接种量、初始pH值和生物炭添加量为主要影响因素,运用最陡爬坡实验确定参数水平,然后运用响应面法,以甲烷产率作为厌氧消化过程响应指标,优化椰子壳生物炭促进餐厨垃圾厌氧消化的工艺条件。结果表明:根据实验数据建立的二次多项式数学模型具有高度显著性(P<0.0001),决定系数R~2=0.9844,说明实验值和预测值之间具有很好的拟合度。通过数值优化得到最优条件分别为污泥接种20.98%,初始pH=7.05,生物炭添加量为22.14 g/L。在该条件下,餐厨垃圾甲烷产率的预测值为331.66 L/kg,实验值为326.15 L/kg,二者相对偏差为1.69%。
        In this paper, we have studied the influence of adding coconut shell biochar on anaerobic digestion of kitchen wastes by taking the sludge inoculation amount, initial pH and addition amount of biochar as the main influencing factors and using the steepest ascent experiment to determine the level of these parameters, and then using the response surface method and taking methane production rate as the response index to optimize the conditions of coconut shell biochar which could promote the anaerobic digestion process of kitchen wastes. The results showed that the quadratic polynomial mathematical model based on experimental data was highly significant(P<0.0001), and the determination coefficient R~2=0.9844, indicating that there was a good degree of fitting between the experimental values and the predicted values. The optimal conditions obtained from value optimization were as follows: the sludge inoculation was 20.98%, initial pH=7.05 and the amount of biochar addition was 22.14 g/L. In this case, the predicted value and the experimental value of the methane yield from kitchen wastes were 331.66 L/kg TS and 326.15 L/kg TS, respectively, and the relative deviation was 1.69%.
引文
[1] 梅冰,谢影. 餐厨垃圾发酵产气潜力与特性[J]. 环境卫生工程, 2016(2): 42-43.
    [2] 王粟,裴占江,史风梅,等. 生物炭对餐厨垃圾厌氧消化的影响[J]. 安徽农业科学, 2017(4): 55-57.
    [3] F Monlau C S N A. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosi hydrolysate detoxification[J]. Bioresource Technology, 2015, 187: 379-386.
    [4] Paz-Ferreiro J, Lu H, Fu S, et al. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review[J]. Solid Earth Discuss, 2014, 5(1): 65-75.
    [5] Fagbohungbe M O, Herbert B M J, Hurst L, et al. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion[J]. Waste Management, 2017, 61: 236-249.
    [6] Sunyoto N M S, Zhu M, Zhang Z, et al. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J]. Bioresource Technology, 2016, 219: 29-36.
    [7] Zhao Z, Zhang Y, Woodard T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191: 140-145.
    [8] Amuda O S, Giwa A A, Bello I A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon[J]. Biochemical Engineering Journal, 2007, 36(2): 174-181.
    [9] Sartape A, Mandhare A, Salvi P, et al. Removal of Bi (III) with adsorption technique using coconut shell activated carbon[J]. Chinese Journal of Chemical Engineering, 2012, 20(4): 768-775.
    [10] Kulkarni S J, Tapre R W, Patil S V, et al. Adsorption of phenol from wastewater in fluidized bed using coconut shell activated carbon[J]. Procedia Engineering, 2013, 51: 300-307.
    [11] Taghizadeh-Toosi A, Clough T J, Sherlock R R, et al. Biochar adsorbed ammonia is bioavailable[J]. Plant and Soil, 2012, 350(1/2): 57-69.
    [12] 梅冰,彭绪亚,贾传兴. 响应面法优化餐厨垃圾厌氧消化工艺条件[J]. 中国沼气, 2016(6): 21-26.
    [13] 裴占江,刘杰,王粟,等. 餐厨垃圾与牛粪联合厌氧消化效率研究[J]. 中国沼气, 2014(6): 3-7.
    [14] 陈晓娟. 轮叶黑藻厌氧发酵产气性能的优化及模拟研究[D]. 武汉:华中科技大学, 2016.
    [15] 孙春燕,温彩霞,刘喜龙,等. 初始pH对生活垃圾和污泥混合物料厌氧发酵产沼气的影响[J]. 农业与技术, 2012(9): 194-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700