5mm微肋管内R404A流动沸腾压降特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaporation pressure drop characteristics of R404A in 5mm microfin tube
  • 作者:何宽 ; 柳建华 ; 张良 ; 余肖霄
  • 英文作者:HE Kuan;LIU Jianhua;ZHANG Liang;YU Xiaoxiao;Key Laboratory of Multiphase Flow and Heat Transfer in Shanghai Power Engineering ,University of Shanghai for Science and Technology;
  • 关键词:蒸发压降 ; 两相流 ; 微肋管 ; R404A ; 模型
  • 英文关键词:evaporation pressure drop;;two-phase flow;;microfin tube;;R404A;;model
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:上海理工大学上海市动力工程多相流动与传热重点实验室;
  • 出版日期:2019-05-08 14:00
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:上海市部分院校能力建设专项计划(16060502600)
  • 语种:中文;
  • 页:HGJZ201908007
  • 页数:8
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:57-64
摘要
为了给冷链用换热器小管径的可行性提供理论支持,对R404A制冷剂在5mm微肋管内流动沸腾压降特性进行了实验研究。实验工况为:饱和温度为0℃、热通量为5~25kW/m2、质量流速为200~500kg/(m2·s)、干度为0.1~0.9。研究结果表明:质量流速的提高不仅会增大摩擦压降,同时使摩擦压降随干度变化的趋势提前转变;摩擦压降受热通量的影响较小,在0.1~0.7的干度区间,摩擦压降不随热通量的增大而改变,热通量仅会使摩擦压降的拐点提前出现;与光滑管相比,微肋管内的两相流动摩擦压降较高,增大质量流速会提高摩擦压降的增量,当干度值为0.4时,增量出现极值,随后增量逐渐上升。本实验研究的数据与理论预测模型的对比显示:修正后的Kim模型能够较佳的预测本实验数据,绝对平均偏差11.54%,偏差幅度±30%以内的数据多达85.23%。
        The characteristics of pressure drop for R404 A evaporation in 5 mm microfin tube were studied, in order to provide theoretical support for the feasibility of using the small diameter of the heat exchanger in the cold chain. Experimental conditions were saturated temperature 0℃, heat flux 5—25 kW/m2, mass flux 200—500 kg/(m2·s), vapor quality 0.1—0.9. The results showed that the increase of mass flow rate will not only increase the friction pressure drop, but also change the trend of friction pressure drop changing with vapor quality ahead of time. Heat flux has less influence on the friction pressure drop.The friction pressure drop doer not change and maxinum value appears ahead of time with the enhance of heat flux at vapor quality range from 0.1 to 0.7. Compared with the smooth tube, the friction pressure drop in the microfin tube is higher and the mass flow rate will increase. The increment of frictional pressure drop is increased. The minimum increment appears at vapor quality 0.4,and increase subsequently. The comparison between the experimental data and the theoretical prediction model showed that modified Kim's model can better predict the experimental data. The absolute average deviation is 11.54%. It is presented with 85.23% of predicted points within ±30%.
引文
[1] VAITKUS L, DAGILIS V. Analysis of alternatives to high GWP refrigerants for eutectic refrigerating systems[J]. International Journal of Refrigeration, 2017, 76:160-169.
    [2]李连生.制冷剂替代技术研究进展及发展趋势[J].制冷学报, 2011,32(6):53-58.LI Liansheng.Research progress on alternative refrigerants and their development trend[J]. Journal of Refrigeration, 2011, 32(6):53-58.
    [3]任滔,丁国良,韩维哲,等.空调器中采用小管径的影响分析及研发思路[J].制冷技术, 2012,16(1):49-52, 67.REN Tao, DING Guoliang, HAN Weizhe, et al. Analysis and research ideas of the influence of small tube diameter in air conditioner[J].Refrigeration Technology, 2012, 16(1):49-52, 67.
    [4] LEI G, YANG Z, XU Y, et al. Research progress on micro-channel heat exchanger[J]. Refrigeration and Air-Conditioning, 2014, 14(12):1-12.
    [5] GRECO A, VANOLI G P. Flow-boiling of R22, R134a, R507, R404A and R410A inside a smooth horizontal tube[J]. International Journal of Refrigeration, 2005, 28(6):872-880.
    [6] OULD DIDI M B. Prediction of two phase pressure gradients in horizontal tubes[J]. International Journal of Refrigeration, 2005, 25:935-947.
    [7] KIM Y C, HWANG J H, YUN R. Evaporation heat transfer and pressure drop of R-22 and R-410A in small sized micro-fin tubes[J].Transactions of the Korean Society of Mechanical Engineers B, 2001,25(7):981-988.
    [8] KIM N H. Evaporation heat transfer and pressure drop of R-410A in three 7.0 mm O.D. microfin tubes having different inside geometries[J].Journal of Mechanical Science and Technology, 2015, 29(8):3519-3530.
    [9] ZHANG H Y, LI J M, LIU N, et al. Experimental investigation of condensation heat transfer and pressure drop of R22, R410A and R407C in mini-tubes[J]. International Journal of Heat&Mass Transfer, 2012, 55(13/14):3522-3532.
    [10] WELLSANDT S, VAMLING L. Evaporation of R407C and R410A in a horizontal herringbone microfin tube:heat transfer and pressure drop[J]. International Journal of Refrigeration, 2005, 28(6):901-911.
    [11] HAN X, LI P, WANG Z, et al. Evaporation heat transfer and pressure drop of R161 in a 7mm micro-fin tube[J]. International Journal of Heat and Mass Transfer, 2013, 62:638-646.
    [12] NIDEGGER E, THOME J, FAVRAT D. Flow boiling and pressure drop measurements for R-134a/oil mixtures. Part 1:Evaporation in a microfin tube[J]. HVAC&R Research, 1997, 3(1):38-53.
    [13] DING G L, HU H T, HUANG X C, et al. Experimental investigation and correlation of two-phase frictional pressure drop of R410A-oil mixture flow boiling in a 5mm microfin tube[J]. International Journal of Refrigeration, 2009, 32(1):150-161.
    [14] BABA D, NAKAGAWA T, KOYAMA S. Flow boiling heat transfer and pressure drop of R1234ze(E)and R32 in a horizontal micro-fin tube[C]//International Refrigeration and Air Conditioning Conference,Purdue, 2012.
    [15]吴昊,柳建华,张良,等. CO2微细通道流动沸腾换热干涸特性[J].化工学报, 2015, 66(5):1676-1682.WU Hao, LIU Jianhua, ZHANG Liang, et al. Characteristics of dryout for CO2flow boiling heat transfer in mini-channels[J]. CIESC Journal,2015, 66(5):1676-1682.
    [16] MANCIN S, DIANI A, ROSSETTO L. R134a flow boiling heat transfer and pressure drop inside a 3.4mm ID microfin tube[J]. Energy Procedia, 2014, 45:608-615.
    [17]陆至羚,柳建华,张良,等.微细通道内CO2沸腾换热与干涸特性[J].化工进展, 2015, 34(8):2961-2966.LU Zhiling, LIU Jianhua, ZHANG Liang, et al. Heat transfer and dryout characteristics of CO2in mini-channel[J]. Chemical Industry and Engineering Progress, 2015, 34(8):2961-2966.
    [18] LEE H S, SON C H. Condensation heat transfer and pressure drop characteristics of R-290, R-600a, R-134a and R-22 in horizontal tubes[J]. Heat and Mass Transfer, 2010, 46(5):571-584.
    [19] HOSSAIN M A, ONAKA Y, MIYARA A. Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze(E), R32 and R410A[J]. International Journal of Refrigeration, 2012, 35(4):927-938.
    [20] HUANG X C, DING G L, HU H T, et al. Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter horizontal microfin tubes[J]. International Journal of Refrigeration,2010, 33(7):1356-1369.
    [21] ROUHANI S Z, AXELSSON E. Calculation of void volume fraction in the subcooled and quality boiling regions[J]. International Journal of Heat&Mass Transfer, 1970, 13(2):383-393.
    [22] MOFFAT R J, et al. Calculating the uncertainty, interpreting the spreadsheet, single-sample uncertainty analysis[M]//Wiley StatsRef:Statistics Reference Online. John Wiley&Sons, Ltd., 2005.
    [23] DUCOULOMBIER M, COLASSON S, BONJOUR J, et al. Carbon dioxide flow boiling in a single microchannel—PartⅠ:Pressure drops[J]. Experimental Thermal&Fluid Science, 2011, 35(4):581-596.
    [24] COL D D, BORTOLATO M, BORTOLIN S. Comprehensive experimental investigation of two-phase heat transfer and pressure drop with propane in a minichannel[J]. International Journal of Refrigeration, 2014, 47:66-84.
    [25] MüLLER-STEINHAGEN H, HECK K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering&Processing Process Intensification, 1986, 20(6):297-308.
    [26] ZHANG W, HIBIKI T, MISHIMA K. Correlations of two-phase frictional pressure drop and void fraction in mini-channel[J].International Journal of Heat&Mass Transfer, 2010, 53(1):453-465.
    [27] MISHIMA K, HIBIKI T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4):703-712.
    [28] KIM S M, MUDAWAR I. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling[J]. International Journal of Heat&Mass Transfer, 2013, 58(1/2):718-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700