微生物燃料电池修复石油污染盐碱土壤
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbial fuel cell remediation for saline-alkaline soil contaminated by petroleum hydrocarbons
  • 作者:李晓晶 ; 赵倩 ; 张月勇 ; 王鑫 ; 万丽丽 ; 李永涛
  • 英文作者:LI Xiaojing;ZHAO Qian;ZHANG Yueyong;WANG Xin;WAN Lili;LI Yongtao;Research Center for Agro-Environmental Pollution Remediation,Institute of Agro-Environmental Protection,Ministry of Agriculture;MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control,College of Environmental Science and Engineering,Nankai University;
  • 关键词:生物电化学修复 ; 土壤微生物燃料电池 ; 内阻 ; 产电 ; 石油烃降解
  • 英文关键词:bioelectrochemical remediation;;soil microbial fuel cell;;Ohmic resistance;;electricity generation;;degradation of the petroleum hydrocarbons
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:农业部环境保护科研监测所农业环境污染修复研究中心;南开大学环境科学与工程学院环境污染过程与基准教育部重点实验室/天津市城市生态环境修复与污染防治重点实验室;
  • 出版日期:2017-02-05
  • 出版单位:环境工程学报
  • 年:2017
  • 期:v.11
  • 基金:国家自然科学基金资助项目(41601536);; 天津市自然科学基金资助项目(16JCQNJC08800);; 国家高技术研究发展计划(863计划)项目(2013AA06A205);; 公益性行业(农业)科研专项(201503107-7)
  • 语种:中文;
  • 页:HJJZ201702082
  • 页数:7
  • CN:02
  • ISSN:11-5591/X
  • 分类号:537-543
摘要
生物电化学技术修复石油污染土壤并同步产出电能是一种新兴的污染土壤生态修复技术。对石油污染土壤通过其微生物燃料电池的构造,利用电化学阻抗谱分析了土壤的欧姆内阻,拟合估算了土壤的电导率,并考察了土壤微生物燃料电池的产电性能和修复效果。结果表明:采用丙酮清洗过的阳极并有水封的情况下,土壤微生物燃料电池的欧姆内阻下降了52%,电导率升高了1倍;在启动后的120 h内,最大电压和累计产出电量分别达189 m V和36 C,与对照相比分别增加了20和29倍。输出电压随着阴极与阳极之间距离的增大而减小。经过30 d的生物电化学处理,土壤中的总石油烃去除率是开路对照的3.3倍。该研究是石油污染盐碱土壤生物电化学修复的初步探索,以为污染土壤的生态修复提供新的思路。
        Bioelectrochemical stimulation as a means of remedying petroleum hydrocarbon contaminated soil is an emerging ecological remediation technique. A soil microbial fuel cell( MFC) was constructed to analyze the ohmic resistance and evaluate the soil electrical conductivity and electricity generation as well as the total petroleum hydrocarbon degradation rate. The results showed that the ohmic resistance of the soil MFC with acetonecleaned anodes and a water seal layer was decreased by 52%,increasing the soil conductivity by 100%. The maximum voltage and accumulated charge output of the soil MFC over 120 h reached 189 m V and 36 C,respectively,exceeding the corresponding values of the control cell by factors of 20 and 29. Furthermore,the voltages decreased with increasing distance between the cathode and the anode. After 30 d,the total petroleum hydrocarbon degradation rate was 3. 3 times higher than that of the control. This study preliminarily explored the application of bioelectrochemical remediation,which is found to be a promising approach for soil remediation.
引文
[1]HALL C,THARAKAN P,HALLOCK J,et al.Hydrocarbons and the evolution of human culture[J].Nature,2003,426(6964):318-322
    [2]TANG Jingchun,WANG Min,WANG Fei,et al.Eco-toxicity of petroleum hydrocarbon contaminated soil[J].Journal of Environmental Sciences,2011,23(5):845-851
    [3]CAI Zhang,ZHOU Qixing,PENG Shengwei,et al.Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L.with strong endurance[J].Journal of Hazardous Materials,2010,183(1/2/3):731-737
    [4]ZHOU Qixing,CAI Zhang,ZHANG Zhineng,et al.Ecological remediation of hydrocarbon contaminated soils with weed plant[J].Journal of Resources and Ecology,2011,2(2):97-105
    [5]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004
    [6]周启星,魏树和,刁春燕.污染土壤生态修复基本原理及研究进展[J].农业环境科学学报,2007,26(2):419-424
    [7]LU Lu,YAZDI H,JIN Song,et al.Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems[J].Journal of Hazardous Materials,2014,274:8-15
    [8]MORRIS J M,JIN Song.Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells[J].Journal of Hazardous Materials,2012,213-214:474-477
    [9]YUAN Yong,CHEN Qing,ZHOU Shungui,et al.Improved electricity production from sewage sludge under alkaline conditions in an insert-type air-cathode microbial fuel cell[J].Journal of Chemical Technology and Biotechnology,2012,87(1):80-86
    [10]WANG Xin,CAI Zhang,ZHOU Qixing,et al.Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells[J].Biotechnology and Bioengineering,2012,109(2):426-433
    [11]DONG Heng,YU Hongbing,WANG Xin.Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells[J].Environmental Science&Technology,2012,46(23):13009-13015
    [12]ZHANG Xiaoyuan,CHENG Shaoan,HUANG Xia,et al.The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells[J].Energy&Environmental Science,2010,3(5):659-664
    [13]ZHANG Fang,MERRILL M D,TOKASH J C,et al.Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors[J].Journal of Power Sources,2011,196(3):1097-1102
    [14]PENG Xinhong,YU Hongbing,WANG Xin,et al.Enhanced performance and capacitance behavior of anode by rolling Fe3O4into activated carbon in microbial fuel cells[J].Bioresource Technology,2012,121:450-453
    [15]LUO Yong,ZHANG Fang,WEI Bin,et al.Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells[J].Journal of Power Sources,2011,196(22):9317-9321
    [16]CHENG Shaoan,WU Jiancheng.Air-cathode preparation with activated carbon as catalyst,PTFE as binder and nickel foam as current collector for microbial fuel cells[J].Bioelectrochemistry,2013,92:22-26
    [17]DONG Heng,YU Han,YU Hongbing,et al.Enhanced performance of activated carbon-polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuel cells[J].Journal of Power Sources,2013,232:132-138
    [18]LI Xiaojing,WANG Xin,ZHANG Yueyong,et al.Opening size optimization of metal matrix in rolling-pressed activated carbon air-cathode for microbial fuel cells[J].Applied Energy,2014,123:13-18
    [19]WANG Xin,CHENG Shaoan,FENG Yujie,et al.Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J].Environmental Science&Technology,2009,43(17):6870-6874
    [20]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996
    [21]PENG Shengwei,ZHOU Qixing,CAI Zhang,et al.Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L.in a greenhouse plot experiment[J].Journal of Hazardous Materials,2009,168(2/3):1490-1496
    [22]EIGENBERG R A,DORAN J W,NIENABER J A,et al.Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop[J].Agriculture,Ecosystems&Environment,2002,88(2):183-193
    [23]LU Lu,HUGGINS T,JIN Song,et al.Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil[J].Environmental Science&Technology,2014,48(7):4021-4029
    [24]DOMINGUEZ-GARAY A,BERNA A,ORTIZ-BERNAD I.,et al.Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil[J].Environmental Science&Technology,2013,47(4):2117-2122
    [25]CHEN Zheng,HUANG Yanchao,LIANG Jianhong,et al.A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere[J].Bioresource Technology,2012,108:55-59
    [26]ZHAO Feng,SLADE R C T,VARCOE J R.Techniques for the study and development of microbial fuel cells:An electrochemical perspective[J].Chemical Society Reviews,2009,38(7):1926-1939
    [27]KONG Lulu,LIU Weitao,ZHOU Qixing.Biochar:An effective amendment for remediating contaminated soil[J].Reviews of Environmental Contamination and Toxicology,2014,228:83-99
    [28]周启星,罗义.污染生态化学[M].北京:科学出版社,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700