生物絮凝系统构建过程对吉富罗非鱼免疫酶和生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of initial establishment of a biofloc technology system on the growth and immune enzyme activity of GIFT tilapia(Oreochromis niloticus)
  • 作者:王潮辉 ; 高启 ; 谭洪新 ; 刘文畅 ; 罗国芝
  • 英文作者:WANG Chaohui;GAO Qi;TAN Hongxin;LIU Wenchang;LUO Guozhi;College of Fisheries and Life Science, Shanghai Ocean University;Shanghai Aquaculture Engineering Technology Research Center;Shanghai Collaborative Innovation Center for Aquatic Animal Genetics and Breeding;
  • 关键词:生物絮凝系统构建 ; 吉富罗非鱼 ; 生长性能 ; 免疫酶活性
  • 英文关键词:biofloc technology system;;GIFT tilapia;;growth;;immune enzyme activity
  • 中文刊名:ZSCK
  • 英文刊名:Journal of Fishery Sciences of China
  • 机构:上海海洋大学水产与生命学院;上海水产养殖工程技术研究中心;上海市协同创新中心水产动物遗传育种中心;
  • 出版日期:2015-07-15
  • 出版单位:中国水产科学
  • 年:2015
  • 期:v.22
  • 基金:上海工程技术中心能力提升课题(13DZ2280500);; 上海市虾类产业技术体系建设项目[沪农科产字(2014)第5号]
  • 语种:中文;
  • 页:ZSCK201504012
  • 页数:9
  • CN:04
  • ISSN:11-3446/S
  • 分类号:113-121
摘要
以循环水养殖为对照组,研究了生物絮凝系统构建过程对初始体质量为(24.17±2.49)g吉富罗非鱼(GIFT,Oreochromis niloticus)免疫酶活性和生长的影响。试验时间30 d。结果表明,生物絮凝构建过程中养殖水体中氨氮、亚硝氮呈现先上升后快速下降的趋势,氨氮质量浓度最高(60.98±7.23)mg/L,亚硝氮质量浓度最高(117.34±15.50)mg/L;实验组罗非鱼的肝胰脏、头肾、血液中碱性磷酸酶、溶菌酶以及总超氧化物歧化酶的活性与对照组均无显著差异;实验组罗非鱼特定生长率、肝体比、丰满度、蛋白质效率显著高于对照组(P<0.05),饲料系数显著低于对照组(P<0.05),增重率比对照组要高27.88%(P<0.05),表明生物絮凝系统构建过程中吉富罗非鱼没有产生明显的应激反应,且生物絮凝养殖系统中罗非鱼的生长要优于循环水养殖系统。
        A biofloc technology system is a complicated microbial ecosystem that requires some time in culture to stabilize inorganic nitrogen assimilation and the quality biofloc formation. The establishment of a biofloc technology system generally results in the accumulation of ammonia or nitrite. The growth and immune enzymes of the Genetically Improved Farmed Tilapia(GIFT) strain of Oreochromis niloticus were examined during the initial establishment of a biofloc technology system. A total of 600 tilapia with an average weight of(24.17± 2.49) g( x ±SD) were raised for 30 days, half in an indoor recirculating aquaculture system(control group) and half in a biofloc technology system(treatment group). Sodium acetate was added to the biofloc technology system at rate of 75% feed to maintain an optimum C︰N ratio of heterotrophic bacteria. The two groups were fed commercial feed at a daily rate of 2% of total fish body weight. The daily feeding rate was adjusted every 10 days based on the weight of a fish sample. Total suspended solids were maintained at roughly 500 mg/L in the control group. Both systems were maintained at a water temperature of 24–26℃ with dissolved oxygen(DO) concentrations over 6 mg/L and a p H of 7.0–7.5, which was adjusted using Na HCO3. A simulated natural photoperiod(12L︰12D) was used. During establishment of the biofloc technology system, concentrations of ammonia and nitrite rapidly spiked and then decreased, reaching peak concentrations of(60.98±7.23) mg/L and(117.34±15.50) mg/L( x ±SD), respectively. Nitrate concentrations stayed at relatively low levels of 1–15 mg/L. In contrast, nitrate levels rose markedly in the control group, ranging from(73.03±3.29) mg/L to(152.44±1.79) mg/L. Concentrations of ammonia and nitrite, however, were relatively stable and maintained relatively low levels of 5 and 0–3 mg/L, respectively. There was no significant difference between treatments in the activities of alkaline phosphatase, lysozyme, or total superoxide dismutase of the hepatopancreas, head kidneys, and serum; however, total superoxide dismutase and lysozyme activity in the hepatopancreas were significantly lower in the treatment group than in the control. In contrast, the specific growth rate, hepatosomatic somatic index, fullness, and protein efficiency ratio of the treatment group were significantly higher than that of the control group(P<0.05), while the feeding rate in the treatment group was lower than the control(P>0.05). Relative to the control, the feed conversion ratio in the experimental group was significantly lower(P<0.05), while weight gain was 27.88% higher(P<0.05). Survival was 100% for both groups, indicating no significant stress reaction to biofloc establishment. Moreover, tilapia grew at faster rates in the biofloc system than the recirculating system.
引文
[1]Bureau of Fisheries,Ministry of Agriculture.China fishery statistical yearbook[M].Beijing:Chinese Agricultural Press,2012.[农业部渔业局.中国渔业统计年鉴[M].北京:中国农业出版社,2012.]
    [2]Yuan Y M,Yuan Y,Dai Y Y,et al.Production status and development trend analysis on tilapia industry in 2013[J].Chinese Fisheries Economics,2014,32(1):149–156.[袁永明,袁媛,代云云,等.2013年罗非鱼产业生产现状及发展趋势分析[J].中国渔业经济,2014,32(1):149–156.]
    [3]Wang Y M,Cao J M,Chu X L,et al.Development situation and countermeasures of Guangdong tilapia industry in2013[J].Guangdong Agricultural Sciences,2014(8):12–17.[王玉梅,曹俊明,储霞玲,等.2013年广东罗非鱼产业发展形势与对策建议[J].广东农业科学,2014(8):12–17.]
    [4]Avnimelech Y,Lacher M.Tentative nutrient balance for intensive fish ponds[J].Israeli Journal of Aquaculture-Bamidgeh,1979,31:3–8.
    [5]Avnimelech Y,Ritvo G.Shrimp and fish pond soils:processes and management[J].Aquaculture,2003,220:549–567.
    [6]Boyd C E.Chemical budgets for channel catfish ponds[J].Trans Am Fish Soc,1985,114:291–298.
    [7]Burford M A,Thompson P J,Mclntosh R P,et al.The contribution of flocculated material to shrimp(Litopenaeus vannamei)nutrition in a high-intensity,zero-exchange system[J].Aquaculture,2004,232(1–4):525–537.
    [8]Avnimelech Y.Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds[J].Aquaculture,2007,264(1–4):140–147.
    [9]Samocha T M,Patnaik S,Speed M,et al.Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei[J].Aqu Eng,2007,36(2):184–191.
    [10]Hargreaves J A.Photosynthetic suspended-growth systems in aquaculture[J].Aqu Eng,2006,34(3):344–363.
    [11]Azim M E,Little D C.The biofloc technology(BFT)in indoor tanks:Water quality,biofloc composition and growth and welfare of Nile tilapia(Oreochromis niloticus)[J].Aquaculture,2008,283:29–35.
    [12]Xu W J,Pan L Q.Effects of bioflocs on growth performance,digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed[J].Aquaculture,2012,356–357:147–152.
    [13]Zhang X Z,Li B,Bai Y Y,et al.Effect of bioflocs on enzyme activities and growth performance of juvenile sea cucumber Apostichopus japonicus[J].Journal of Fishery Sciences of China,2014,21(4):509–517.[张秀珍,李斌,白艳艳,等.生物絮团对仿刺参幼参生长与酶活性的影响[J].中国水产科学,2014,21(4):509–517.]
    [14]Crab R,Kochva M,Verstraete W,et al.Bio-flocs technology application in over-wintering of tilapia[J].Aquac Eng,2009,40:105–112.
    [15]Deng J P,Huang J H,Jiang S G,et al.Conditions for bio-floc formation and its effects on Penaeus monodon culture system[J].South China Fisheries Science,2014,10(3):29–38.[邓吉朋,黄建华,江世贵,等.生物絮团在斑节对虾养殖系统中的形成条件及作用效果[J].南方水产科学,2014,10(3):29–38.]
    [16]Xia Y,Qiu L J,Yu E M,et al.Dynamic changes of water quality factors and composition of prokaryotic and eukaryotic microorganisms during culturing of bio-floc[J].Journal of Fishery Sciences of China,2014,21(1):75–83.[夏耘,邱立疆,郁二蒙,等.生物絮团培养过程中养殖水体水质因子及原核与真核微生物的动态变化[J].中国水产科学,2014,21(1):75–83.]
    [17]Avnimelech Y.Carbonrnitrogen ratio as a control element in aquaculture systems[J].Aquaculture,1999,176:227–235.
    [18]State Environmental Protection Administration of China.Methods of Monitoring and Analyzing for Water and Wastewater[M].4th ed.Beijing:China Environmental Sciemce Press,2002.[国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.]
    [19]Ebeling J M,Michael B T,Bisogni J J.Engineering analysis of the stoichiometry of photoautotrophic,autotrophic,and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J].Aquaculture,2006,257:346–358.
    [20]Fu D Y,Yu X T,Wang F.The effects of compound microorganisms on the growth and water quality in carps[J].Feed Res,2005(8):43–45.
    [21]Goldman J C,Caron D A,Dennett M R.Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio[J].Limnol Oceanogr,1987,32(6):1239–1252.
    [22]Pan Y F,Luo G Z,Tan H X,et al.The comparison of different carbon sourses impact on the bioflocs formation of solid waste of aquaculture[J].Technology of Water Treatment,2011,37(11):20–24.[潘云峰,罗国芝,谭洪新,等.不同碳源对水产养殖固体颗粒物生物絮凝效果的比较[J].水处理技术,2011,37(11):20–24.]
    [23]Sakai D K.The non-specific activation of rainbow trout,Salmon gardener Richardson,complement by Aeromonas salmonicida extracellular products and the correlation of complement activity with the inactivation of lethal toxicity products[J].J Fish Dis,1984,7(5):329–333.
    [24]Xiao K Y.Aquatic animal immunity and Application[M].Beijing:Science Press,2007.[肖克宇.水产动物免疫与应用[M].北京:科学出版社,2007.]
    [25]Cheng T C.The role of lysosmal hydrolases in moluscan cellular response to immunologic challenge[J].Curr Top Comp Pathol,1978,23(1):59–71.
    [26]Chen J Z,Zang X L,Hu G D,et al.The immune response of GIFT Oreochromis niloticus and its susceptibility to Streptococcus iniae under stress in different ammonia[J].Ecology and Environmnet,2011,20(4):629–634.[陈家长,臧学磊,胡庚东,等.氨氮胁迫下罗非鱼(GIFT Oreochromis niloticus)机体免疫力的变化及其对海豚链球菌易感性的影响[J].生态环境学报,2011,20(4):629–634.]
    [27]Hong M L,Chen L Q,Sun X J,et al.Effects of acute nitrite exposure on immunity indicators and HSP70 expression in Chinese mitten-hand crab(Eriocheir sinensis)[J].Chinese Journal of Applied and Environmental Biology,2011,17(5):688–693.[洪美玲,陈立侨,孙新谨,等.亚硝酸盐急性胁迫对中华绒螯蟹幼体相关免疫指标和应激蛋白(HSP70)表达的影响[J].应用与环境生物学报,2011,17(5):688–693.]
    [28]Chen J Z,Zang X L,Meng S L,et al.Effect of nitrite nitrogen stress on the activities of nonspecific immune enzymes in serum of tilapia(GIFT Oreochromis niloticus)[J].Ecology and Environmental Sciences,2012,21(5):897–901.[陈家长,臧学磊,孟顺龙,等.亚硝酸盐胁迫对罗非鱼(GIFT Oreochromis niloticus)血清非特异性免疫酶活性的影响[J].生态环境学报,2012,21(5):897–901.]
    [29]Ma Y Q,Li B,Zhang X Z,et al.The effect of bio-floc on digestive and immune enzymes activity in juvenile sea cucumber Apostichopus japonicus[J].Journal of Hydroecology,2013,34(6):91–96.[马元庆,李斌,张秀珍,等.生物絮团对仿刺参幼参消化与免疫酶活性的影响[J].水生态学杂志,2013,34(6):91–96.]
    [30]Guo W T,Li J,Wang Q,et al.Study on effect of probiotic on nonspecial immune factors of Paralichthys olivaceus[J].Advances in Marine Science,2006,24(1):51–59.[郭文婷,李健,王群,等.微生态制剂对牙鲆非特异性免疫因子影响的研究[J].海洋科学进展,2006,24(1):51–59.]
    [31]Dunier M,Siwicki A K,Demael.Effects of organophosphorus insecticides:Effects of trichlorfon and dichlorvos on the immune response of carp(Cyprinus carpio):In vitro effects on lymphocyte proliferation and phagocytosis and in vivo effects on humoral response[J].Ecotox Environ Safe,1991,22(1):79–87.
    [32]Meng S L,Zang X L,Qu J H,et al.Susceptibility to Streptococcus iniae and response of serum SODs of tilapia(Oreochromis niloticus)under nitrite nitrogen stress[J].Rural Eco-Environment,2013,29(1):106–109.[孟顺龙,臧学磊,瞿建宏,等.亚硝态氮胁迫下罗非鱼对海豚链球菌的易感性及血清超氧化物歧化酶的响应[J].生态与农村环境学报,2013,29(1):106–109.]
    [33]Xia Y,Yu E M,Xie J,et al.Analysis of bacterial community structure of Bio-Floc by PCR-DGGE[J].Journal of Fisheries of China,2012,36(10):1563–1571.[夏耘,郁二蒙,谢骏,等.基于PCR-DGGE技术分析生物絮团的细菌群落结构[J].水产学报,2012,36(10):1563–1571.]
    [34]Li W F,Zhang X P,Song W H,et al.Effects of Bacillus preparation added to culture water on immunity and antioxidant activities in grass carp(Ctenopharyngodon idella)[J].Journal of Fishery Sciences of China,2012,19(6):1027–1032.[李卫芬,张小平,宋文辉,等.养殖水体中添加芽孢杆菌对草鱼免疫和抗氧化功能的影响[J].中国水产科学,2012,19(6):1027–1032.]
    [35]Xu W J,Pan L Q.Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input[J].Aquaculture,2013,412–413:117–124.
    [36]St Dimitrova M,Tishinova V,Velcheva V.Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp(Cyprinus carpio)[J].Comp Biochem Physiol Part C-Pharmacol,Toxicol Endocrinol,1994,108(1):43–46.
    [37]Montero D,Tort L,Robaina L,et al.Low vitamin E in diet reduces stress resistance of gilthead seabream(Sparus aurata)juveniles[J].Fish Shellfish Immunol,2001,11(6):473–490.
    [38]Wang W B,Li A H.The effect of environmental stress to fish immune system[J].Journal of Fisheries of China,2002,26(4):368–374.[王文博,李爱华.环境胁迫对鱼类免疫系统影响的研究概括[J].水产学报,2002,26(4):368–374.]
    [39]Li W F,Deng B,Chen N N,et al.Effects of Bacillus on water quality,growth and antioxidant activity of intestinal mucosa of Ctenopharyngodon idellus[J].Journal of Hydroecology,2012,33(1):65–70.[李卫芬,邓斌,陈南南,等.芽孢杆菌对草鱼生长和肠粘膜抗氧化功能及养殖水质的影响[J].水生态学杂志,2012,33(1):65–70.]
    [40]Sun Z,Wang X H,Huang J.The biochemical analysis of a microbial floc and its effect on the immunity of Litopenaeus vannamei[J].Journal of Fisheries of China,2013,37(3):473–480.[孙振,王秀华,黄倢.一种微生物絮团的生化分析及其对凡纳滨对虾免疫力的影响[J].水产学报,2013,37(3):473–480.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700