用户名: 密码: 验证码:
微量Sr、Sn对Mg-Zn-Ca-Mn合金力学和腐蚀性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Trace Sr and Sn on Mechanical and Corrosion Properties of Mg-Zn-Ca-Mn Alloy
  • 作者:王敬丰 ; 刘青山 ; 马尧 ; 蒋伟燕 ; 郭胜锋 ; 潘复生
  • 英文作者:WANG Jing-feng;LIU Qing-shan;MA Yao;JIANG Wei-yan;GUO Sheng-feng;PAN Fu-sheng;Chongqing University;Southwest University;
  • 关键词:镁合金 ; 微合金化 ; 力学性能 ; 腐蚀性能 ; 快速凝固 ; 非晶形成能力
  • 英文关键词:magnesium alloy;;micro-alloying;;mechanical property;;corrosion resistance;;rapid solidification;;glass forming ability
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:重庆大学;西南大学;
  • 出版日期:2019-03-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家重点研发计划(2016YFB0301100);; 重庆市基础前沿研究计划(cstc2015jcyjBX0081);; 国家自然科学基金(51571044,51874062);; 中央高校基本科研业务费(NO.2018CDGFCL0005)~~
  • 语种:中文;
  • 页:BMJS201903014
  • 页数:8
  • CN:03
  • ISSN:50-1083/TG
  • 分类号:97-104
摘要
目的研究Sr、Sn元素对快速凝固制备的Mg ZnCaMn合金室温力学性能和生物腐蚀性能的影响规律。方法采用X射线衍射仪、扫描电子显微镜、差热分析仪、万能力学实验机、静态浸泡、电化学测试等实验手段,分别研究添加Sr/Sn元素对MgZnCaMn合金结构、微观组织变化、热学性能、室温强度、塑性变形及体外降解行为的影响。结果添加Sr元素后,MgZnCaMn合金中的非晶相数量增加,尤其是Mg64.7Zn30Ca4Mn0.8Sr0.5合金浸泡析氢量显著降低,自腐蚀电流密度为1.61×10~(-4)A/cm~2,平均腐蚀速率为0.35 mm/a,抗压强度为621MPa,塑性压缩应变为0.8%。添加Sn元素后,MgZnCaMn合金中的非晶相近乎完全消失,合金组织中主要为雪花状的Mg2Sn相及MnZn13相,合金的析氢量无显著变化,其与Mg65.2Zn30Ca4Mn0.8合金的自腐蚀电流密度皆在10~(-4)数量级,其抗压强度为412 MPa,压缩塑性应变为1.6%。结论添加Sr元素可以提高MgZnCaMn合金的非晶形成能力,增加非晶相体积分数,同时提升了合金的强度和腐蚀性能。添加Sn元素则降低了MgZnCaMn合金的非晶形成能力,合金主要由延性相构成,其室温塑性得到明显改善,与初始合金相比,耐蚀性略有降低,但仍然优于常规的生物医用镁合金(如高纯镁、Mg-Zn-Ca等),具有较好的耐蚀性。
        The work aims to study the effect of Sr/Sn on the mechanical and bio-corrosion properties of rapidly solidified MgZnCaMn alloys. The effects of Sr/Sn on the structure, microstructure, thermal properties, room temperature strength, plastic deformation and in vitro degradation of MgZnCaMn alloys were investigated by X-ray diffraction, scanning electron microscopy, differential thermal analysis, universal capacity test machine, static immersion and electrochemical testing, respectively.After the addition of Sr element, the amount of amorphous phase in MgZnCaMn alloy increased, and the amount of hydrogen evolution in Mg_(64.7)Zn_(30)Ca_4Mn_(0.8)Sr_(0.5) alloy decreased significantly. The self-corrosion current density was 1.61×10~(-4)A/cm~2, the average corrosion rate was 0.35 mm/a, the compressive strength was 621 MPa and the plastic compressive strain was 0.8%. After the addition of Sn element, the amorphous phase in the MgZnCaMn alloy disappeared almost completely. The snow-like Mg_2Sn phase and MnZn_13 phase were the main phases in the alloy. The hydrogen evolution of the alloy had no significant change. The self-corrosion current density were at magnitude of 10-4, the compressive strength was 412 MPa, and the compressive plastic strain was 1.6%. The addition of Sr can improve the amorphous forming ability of MgZnCaMn alloy, increase the volume fraction of amorphous phase, and improve the strength and corrosion performance of the alloy. The addition of Sn element reduces the amorphous forming ability of MgZnCaMn alloy. The alloy is mainly composed of ductile phase, and its room temperature plasticity is obviously improved. Compared with the initial alloy, the corrosion resistance reduces slightly, but it is still superior to conventional biomedical magnesium. Alloys(such as high-purity magnesium Mg, Mg-Zn-Ca, etc.) have good corrosion resistance.
引文
[1]STAIGER M P, PIETAK A M, HUADMAI J, et al. Magnesiumanditsalloysasorthopedicbiomaterials:Areview[J]. Biomaterials, 2006, 27:1728-1734.
    [2]WAN Y Z, XIONG G Y, LUO H L, et al. Preparation and characterization of a new biomedical magnesium-calcium alloy[J]. Materials&design, 2008(29):2034-2037.
    [3]LIHF,ZHAOK,WANGYB,etal.Studyon bio-corrosion and cytotoxicity of a Sr-based bulk metallic glass as potential biodegradable metal[J]. Journal of biomedical materials research part B—applied biomaterials,2012, 100(2):368-377.
    [4]胡壮麒,张海峰.块状非晶合金及其复合材料研究进展[J].金属学报, 2010, 46(11):1391-1421.HU Zhuang-qi, ZHANG Hai-feng. Recent progress in the areaofbulkamorphousalloysandcomposites[J].Acta metallurgica sinica, 2010, 46(11):1391-1421.
    [5]王建利,万银,朱美玲,等.Sn元素对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J].材料热处理学报,2017, 38(5):42-48.WANG Jian-li, WAN Yin, ZHU Mei-ling, et al. Effect of Sn element on glass forming ability and corrosion resistanceofMg-Zn-Caalloys[J].Transactionsofmaterials and heat treatment, 2017, 38(5):42-48.
    [6]万银.Mn?Sr?Sn对Mg-Zn-Ca合金非晶形成能力?腐蚀和压缩性能的影响[D].西安:西安工业大学, 2017.WAN Yin. The effect of Mn?Sr and Sn on glass forming ability, corrosion and compressive properties of Mg-Zn-Ca alloy[D]. Xi’an:Xi’an Technological University, 2017.
    [7]LI Hai-fei, PANG Shu-jie, LIU Ying, et al. Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications[J]. Materials&design, 2015, 67:9-19.
    [8]LIHai-fei,HEWei,PANGShu-jie,etal.Invitroresponsesofbone-formingMC3T3-E1pre-osteoblaststo biodegradable Mg-based bulk metallic glasses[J]. Materials science and engineering C, 2016, 68:632-641.
    [9]MATIASTB,ROCHEV,NOGUEIRARP,etal.Mg-Zn-Ca amorphous alloys for application as temporary implant:Effect of Zn content on the mechanical and corrosionproperties[J].Materials&design,2016,110:188-195.
    [10]WANG J F, HUANG S, LI Y, et al. Microstructure, mechanicalandbio-corrosionpropertiesofMn-doped Mg-Zn-Cabulkmetallicglasscomposites[J].Materials science and engineering C, 2013, 33:3832-3838.
    [11]BERGLUND I S, DIRR E W, RAMASWAMY V, et al.TheeffectofMg-Ca-Sralloydegradationproductson human mesenchymal stem cells[J]. Journal of biomedical materialsresearchpartBappliedbiomaterials,2017,106(2):697-704.
    [12]冯中学,潘复生,史庆南,等.Sr?Ca复合添加对AZ31镁合金组织和性能的影响[J].功能材料,2014,45(7):7061-7065.FENGZhong-xue,PANFu-sheng,SHIQing-nan,etal.EffectofSrandCacompoundalloyingonthemicrostructureandpropertyoftheAZ31magnesiumalloy[J].Functional materials, 2014, 45(7):7061-7065.
    [13]李鹏博,潘荣凯,丁文江,等.Mg2Sn的弹性性能和电子结构的第一性原理计算[J].广西大学学报(自然科学版), 2014(3):479-483.LI Peng-bo, PAN Rong-kai, DING Wen-jiang, et al. Elastic and electronic properties of Mg2Sn from first-principles calculations[J]. Journal of Guangxi University(nat sci ed),2014(3):479-483.
    [14]WANG J F, MA Y, GUO S F, et al. Effect of Sr on the microstructure and biodegradable behavior of Mg-Zn-CaMn alloys for implant application[J]. Materials&design,2018, 153:308-316.
    [15]TURNBULLD.Underwhatconditionscanaglassbe formed[J]. Contemporary physics, 1969, 10(5):473-488.
    [16]LI Q F, WENG H R, SUO Z Y, et al. Microstructure and mechanicalpropertiesofbulkMg-Zn-Caamorphousalloys and amorphous matrix composites[J]. Materials science&engineering A, 2008, 487(1):301-308.
    [17]JIANG Wei-yan, WANG Jing-feng, LIU Qing-shan, et al.Low hydrogen release behavior and antibacterial property ofMg-4Zn-x Snalloys[J].Materialsletters,2019,241:88-91.
    [18]LIU X, SHAN D, SONG Y, et al. In?uences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy[J]. Electrochim acta, 2011, 56:2582-590.
    [19]GU X, ZHENG Y, CHENG Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30(4):484-498.
    [20]IBRAHIMH,KLARNERAD,POORGANJIB,etal.Microstructural, mechanical and corrosion characteristics ofheat-treatedMg-1.2Zn-0.5Ca(wt%)alloyforuseas resorbablebonefixationmaterial[J].Journalofthemechanical behavior of biomedical materials, 2017, 69:203-212.
    [21]HA H Y, KANG J Y, KIM S G, et al. Influences of metallurgicalfactorsonthecorrosionbehaviourofextruded binary Mg-Sn alloys[J]. Corrosion science, 2014, 82:369-379.
    [22]WANG Wei-dan,HAN Jun-jie, YANG Xuan, et al. Novel biocompatible magnesium alloys design with nutrient alloyingelementsSi,CaandSr:Structureandproperties characterization[J]. Materials science and engineering B,2016, 214:26-36.
    [23]SHIZ,SONGG,ATRENSA.Corrosionresistanceof anodisedsingle-phaseMgalloys[J].Surface&coatings technology, 2006, 201(1):492-503.
    [24]LIU Y,CURIONIM, LIUZ. Correlationbetween electrochemical impedance measurements and corrosion rates ofMg-1Caalloyinsimulatedbodyfluid[J].Electrochimica acta, 2018, 264:101-108.
    [25]ZHAO D, WITTE F, LU F, et al. Current status on clinical applications of magnesium-based orthopaedic implants:A review fromclinicaltranslationalperspective[J].Biomaterials, 2017, 112:287-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700