结构参数和操作参数对生物质气化制氢技术的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of structural and operational parameters on biomass gasification technology for hydrogen production
  • 作者:李崇聪 ; 张博闻 ; 马丹竹 ; 贾冯睿 ; 王卫强
  • 英文作者:LI Chongcong;ZHANG Bowen;MA Danzhu;JIA Fengrui;WANG Weiqiang;College of Petroleum Engineering,Liaoning Shihua University;
  • 关键词:生物质 ; 气化 ; 氢气 ; 结构参数 ; 操作参数
  • 英文关键词:biomass;;gasification;;hydrogen;;structural parameters;;operational parameters
  • 中文刊名:HXGJ
  • 英文刊名:Energy Chemical Industry
  • 机构:辽宁石油化工大学石油天然气工程学院;
  • 出版日期:2016-10-28
  • 出版单位:能源化工
  • 年:2016
  • 期:v.37;No.197
  • 基金:辽宁省教育厅高等学校科学研究一般项目(L2015303);; 2016年大学生创新创业训练项目“生物质催化重整制氢实验研究”
  • 语种:中文;
  • 页:HXGJ201605005
  • 页数:6
  • CN:05
  • ISSN:32-1856/TQ
  • 分类号:23-28
摘要
生物质气化制氢技术不仅是一种清洁能源技术,而且有助于缓解我国能源压力,优化能源结构。介绍并对比了生物质制氢的主要方法,包括生物法和热化学法制氢技术。热化学法制氢技术的工业化发展较受关注,主要包括气化法、热解法和超临界转化法,其中气化法因产氢量高、废弃物少和工艺要求较易实现等优点,成为目前热化学法制氢的主要方法。阐述了生物质气化过程的基本原理,分别从结构参数(物料特性、气化剂、气化炉种类、催化剂)和操作参数(反应温度、当量比、水蒸气配气比)系统地分析了影响生物质气化过程的主要影响因素及其变化规律,指出应从优化结构参数和操作参数上促进生物质气化制氢技术的发展。
        Biomass gasification technology for hydrogen production is not only a clean energy technology,but also helpful to relieve the pressure of energy and optimize energy structure in our country. The main methods of biomass hydrogen production,including biological technology and thermochemical technology,are presented and compared. Thermochemical technologies include gasification,pyrolysis and supercritical conversion method,whose industrial development receives more attention. Biomass gasification technology has become the main method for hydrogen production for recent years because of its advantages of high hydrogen production,less waste and easy technical requirements. The basic principles of biomass gasification process are expounded. The main influence factors on the biomass gasification process and its change rule are analyzed respectively from the structural parameters such as material properties,gasification agent,furnace type and catalysts etc.,and operational parameters such as reaction temperature,equivalence ratio and vapor gas distribution ratio. It is pointed out that promoting the development of biomass gasification technology should be set about from optimization the structural and operational parameters.
引文
[1]BLANCO P H,WU C,WILLIAMS P T.Influence of Ni/Si O2catalyst preparation methods on hydrogen production from the pyrolysis/reforming of refuse derived fuel[J].International Journal of Hydrogen Energy,2014,39(11):5723-5732.
    [2]陈冠益,孔韡,徐莹,等.生物质化学制氢技术研究进展[J].浙江大学学报(工学版),2014,48(7):1318-1328.
    [3]张全国,王毅.光合细菌生物制氢技术研究进展[J].农业机械学报,2013,44(6):156-161.
    [4]高宁博,李爱民,曲毅.生物质气化及其影响因素研究进展[J].化工进展,2010,29(1):52-57.
    [5]SHEN D,JIN W,HU J,et al.An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals:Structures,pathways and interactions[J].Renewable and Sustainable Energy Reviews,2015,51(6):761-774.
    [6]SHARMA A,PAREEK V,ZHANG D.Biomass pyrolysisa review of modelling,process parameters and catalytic studies[J].Renewable and Sustainable Energy Reviews,2015,50(9):1081-1096.
    [7]PARTHASARATHY P,NARAYANAN K S.Hydrogen production from steam gasification of biomass:influence of process parameters on hydrogen yield-a review[J].Renewable Energy,2014,66(3):570-579.
    [8]吕友军,冀承猛,郭烈锦.农业生物质在超临界水中气化制氢的实验研究[J].西安交通大学学报,2005,39(3):238-242.
    [9]邓文义,于伟超,苏亚欣,等.生物质热解和气化制取富氢气体的研究现状[J].化工进展,2013,32(7):1534-1541.
    [10]常轩,齐永锋,张冬冬,等.生物质气化技术研究现状及其发展[J].现代化工,2013(6):36-40.
    [11]ASADULLAH M.Barriers of commercial power generation using biomass gasification gas:a review[J].Renewable and Sustainable Energy Reviews,2014,29(7):201-215.
    [12]RUIZ J,JUREZ M,MORALES M,et al.Biomass gasification for electricity generation:review of current technology barriers[J].Renewable and Sustainable Energy Reviews,2013,18(2):174-183.
    [13]YANG H,LIU H,ZHOU K,et al.Oxidation path analysis of NO in the adsorption and removal process using activated carbon fibers[J].Journal of Fuel Chemistry and Technology,2012,40(8):1002-1008.
    [14]苏德仁,黄艳琴,周肇秋,等.两段式固定床富氧-水蒸气气化实验研究[J].燃料化学学报,2015,39(8):595-599.
    [15]胡夏雨,袁洪友,谢建军,等.生物质混流式固定床气化炉运行特性分析[J].新能源进展,2015,3(3):163-168.
    [16]PARTHASARATHY P,NARAYANAN K S.Hydrogen production from steam gasification of biomass:Influence of process parameters on hydrogen yield-a review[J].Renewable Energy,2014,66:570-579.
    [17]陈超,周劲松,项阳阳,等.生物质高温气流床分级气化特性[J].浙江大学学报(工学版),2015,49(4):626-631.
    [18]王艳,陈文义,孙姣,等.国内外生物质气化设备研究进展[J].化工进展,2012,31(8):1656-1664.
    [19]PFEIFER C,PUCHNER B,HOFBAUER H.Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2[J].Chemical Engineering Science,2009,64(23):5073-5083.
    [20]AL-FATESH A,IBRAHIM A,FAKEEHA A,et al.Oxidative CO2reforming of CH4over Ni/α-Al2O3catalyst[J].Journal of Industrial and Engineering Chemistry,2011,17(3):479-483.
    [21]YU Q Z,BRAGE C,NORDGREEN T,et al.Effects of Chinese dolomites on tar cracking in gasification of birch[J].Fuel,2009,88(10):1922-1926.
    [22]杨小芹,徐绍平,胡冠,等.不同矿源橄榄石对催化苯水蒸气重整的影响[J].催化学报,2009,30(6):497-502.
    [23]苏德仁,刘华财,周肇秋,等.生物质流化床氧气-水蒸气气化实验研究[J].燃料化学学报,2015,40(3):309-314.
    [24]Di FELICE L,COURSON C,NIZNANSKY D,et al.Biomass gasification with catalytic tar reforming:a model study into activity enhancement of calcium-and magnesium-oxide-based catalytic materials by incorporation of iron[J].Energy&Fuels,2010,24(7):4034-4045.
    [25]RAPAGNS,D'ORAZIO A,GALLUCCI K,et al.Hydrogen rich gas from catalytic steam gasification of biomass in a fluidized bed containing catalytic filters[J].Chem Eng Trans,2014,37:157-162.
    [26]KONG M,YANG Q,FEI J,et al.Experimental study of Ni/Mg O catalyst in carbon dioxide reforming of toluene,a model compound of tar from biomass gasification[J].International Journal of Hydrogen Energy,2012,37(18):13355-13364.
    [27]童力,罗思义,胡松涛.高炉渣余热回收协同转化生物质制氢实验研究[J].化工学报,2014,65(9):3634-3639.
    [28]ZHANG L,CHAMPAGNE P,XU C C.Screening of supported transition metal catalysts for hydrogen production from glucose via catalytic supercritical water gasification[J].International Journal of Hydrogen Energy,2011,36(16):9591-9601.
    [29]BANG Y,SEO J G,SONG I K.Hydrogen production by steam reforming of liquefied natural gas(LNG)over mesoporous Ni-La-Al2O3aerogel catalysts:effect of La content[J].International Journal of Hydrogen Energy,2011,36(14):8307-8315.
    [30]罗勇,武志敏,权志鹏,等.生物质气化焦油催化裂解获得高气体能产率的实验研究[J].太阳能学报,2013,34(2):289-293.
    [31]李琳娜,应浩,涂军令,等.木屑高温水蒸气气化制备富氢燃气的特性研究[J].林产化学与工业,2011,31(5):18-24.
    [32]高宁博,李爱民,全翠.生物质高温气化重整制氢实验研究[J].太阳能学报,2014,35(5):911-917.
    [33]NO S Y.Application of bio-oils from lignocellulosic biomass to transportation,heat and power generation-a review[J].Renewable and Sustainable Energy Reviews,2014,40:1108-1125.
    [34]金洪奎,刘俊峰,刘洪杰,等.秸秆气化过程中焦油含量的影响因素[J].农机化研究,2009,31(2):211-213.
    [35]臧云浩,刘运权,王夺.两级下吸式生物质气化炉气化性能的研究[J].可再生能源,2014,32(6):836-842.
    [36]WEI L,XU S,ZHANG L,et al.Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor[J].International Journal of Hydrogen Energy,2007,32(1):24-31.
    [37]HU G,XU S,LI S,et al.Steam gasification of apricot stones with olivine and dolomite as downstream catalysts[J].Fuel Processing Technology,2006,87(5):375-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700