油菜素内酯提高玉米抗禾谷镰孢菌侵染的生理机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Physiological Mechanism of the Increase of the Infection of the Maize Resistance to the Fusarium graminearum
  • 作者:张昊 ; 冯佳佳 ; 孙丹丹 ; 闫青地 ; 赵亚林 ; 王珊 ; 王平平 ; 赵亚卓 ; 王倩 ; 王凤茹 ; 董金皋
  • 英文作者:ZHANG Hao;FENG Jiajia;SUN Dandan;YAN Qingdi;ZHAO Yalin;WANG Shan;WANG Pingping;ZHAO Yazhuo;WANG Qian;WANG Fengru;DONG Jingao;College of Life Sciences,Hebei Agricultural University,Key Laboratory of Hebei Province for Plant Physiology and Molecular Plant Pathology;
  • 关键词:油菜素内酯 ; 禾谷镰孢 ; 生理机制 ; 玉米
  • 英文关键词:Brassinosteroid;;Fusarium graminearum;;Physiological mechanism;;Maize
  • 中文刊名:HBNB
  • 英文刊名:Acta Agriculturae Boreali-Sinica
  • 机构:河北农业大学生命科学学院河北省植物生理和分子病理学重点实验室;
  • 出版日期:2019-02-28
  • 出版单位:华北农学报
  • 年:2019
  • 期:v.34
  • 基金:研究生创新创业项目(2017ZD06;CXZZBS2018113);; 大学生创新创业项目(2018090);; 国家重点研发计划项目(2016YFD0300704);; 国家重点研发区域课题(2018YFD0200607)
  • 语种:中文;
  • 页:HBNB201901033
  • 页数:6
  • CN:01
  • ISSN:13-1101/S
  • 分类号:217-222
摘要
为明确油菜素内酯(BR)增强玉米抗禾谷镰孢侵染的作用及机制,以玉米郑单958为试验材料,分设喷施BR和未喷施BR的处理,在玉米喷施BR 10 d后,接种禾谷镰孢菌,调查比较喷施BR后玉米感染禾谷镰孢菌的发病情况,确定油菜素内酯提高玉米抗禾谷镰孢侵染的确切作用,结果表明,在未喷施BR的自然生长条件下,在玉米上接种禾谷镰孢,发现茎秆表面有明显的病原菌沿接种针孔侵染扩散的痕迹,玉米茎剖面内髓组织黑褐色严重,几乎整个节间均已被病原菌侵染;但在喷施BR 10 d后再接种禾谷镰孢,玉米茎剖面内的髓组织被病原菌侵染面积明显减少,发病明显减轻,说明BR提高了玉米抗禾谷镰孢侵染的能力。用含BR的PDA培养基培养禾谷镰孢,与对照相比,禾谷镰孢发育未受到明显的影响。BR处理后,玉米叶片脯氨酸含量增加,Real-time PCR分析编码脯氨酸合成酶的基因Zm P5CS的表达量,发现其表达量确实受BR的诱导。同时BR处理后玉米叶片可溶性糖含量极显著增加,保护酶SOD和PAL活性显著增加,POD活性极显著增加。说明BR提高玉米自身抗逆性来提高抵抗禾谷镰孢侵染。油菜素内酯对禾谷镰孢的生长发育没有明显的影响;油菜素内酯提高玉米抗禾谷镰孢侵染的原因可能不是抑制禾谷镰孢的生长发育,而是通过提高玉米脯氨酸合成、保护酶活性、可溶性糖含量,从而提高玉米自身免疫能力。
        To clear the effect and mechanism of brassinosteroid( BR) on enhancing the maize resistance against the Fusarium graminearum infection,maize Zhengdan 958 was used as the experimental material,two treatments were spraying BR and unspraying BR on maize plants,10 days later after treatment processing,inoculated Fusarium graminearum spore on the stem,and then investigated and compared the maize incidence after treatment of spraying BR,determined the exact effect of BR on improving the maize resistance against the Fusarium graminearum infection. The results showed that under the natural condition without spraying BR,after inoculating Fusarium graminearum spore on maize stem,there were obvious traces of pathogen infection and spread along the inoculation needle on the stem surface,the medullary tissue was seriously dark brown,and almost all the nodes had been infected with pathogens. But the invasion area by the pathogen in intramedullary tissue was significantly reduced of the maize stem sprayed BR 10 days before inoculating Fusarium graminearum spore,and the morbidity was significantly reduced,this indicated that BR enhanced the ability of maize to resist the infection. The growth and development of Fusarium graminearum colony were not affected obviously when cultured in the PDA medium containing BR. After BR treatment,the content of proline in maize leaves increased,Real-time PCR analyzed the expression of gene ZmP5 CS which encoded with proline synthase,and found that its expression was indeed induced by BR. At the same time,the content of soluble sugar in corn increased extremely significant,and the enzyme activity of protective enzyme SOD and PAL significantly increased and POD increased extremcly significant,it was shown that BR improved the resistance of maize to Fusarium graminearum infestation by raising the corn's own immunity. The conclusion was that BR treatment had no obvious effect on the growth and development of Fusarium graminearum colony,the reason for the increase of the maize resistance against the Fusarium graminearum infection was not the inhibition of BR on the growth and development of Fusarium graminearum,but by raising corn proline synthesis,protective enzyme activity,soluble sugar content and improve corn immune ability.
引文
[1] Yu C J S K. Virulence of Fusarium spp. associated withstalk rot of maize in North-East China[J].Physiological&Molecular Plant Pathology,2016(98):1-8. doi:10. 1016/j. pmpp. 2016. 12. 004.
    [2] Tesso T,Ejeta G. Stalk strength and reaction to infectionby Macrophomina phaseolina of brown midrib maize(Zeamays)and sorghum(Sorghum bicolor)[J]. Field CropsResearch,2011,120(2):271-275. doi:10. 1016/j. fcr.2010. 10. 015.
    [3] Borah S N,Deka S,Sarma H K. First report of Fusariumverticillioides causing stalk rot of maize in Assam,India[J]. Plant Disease,2016,100(7):1501. doi:10. 1094/PDIS-01-16-0074-PDN.
    [4] Mir Z R,Singh P K,Zaidi P H,Vinayan M,Krishna MK,Vemula A K,Rathore A. Genetic analysis of resist-ance to post flowering stalk rot in tropical germplasm ofmaize(Zea mays L.)[J]. Crop Protection,2018,106:42-49. doi:10. 1016/j. cropro. 2017. 12. 004.
    [5] Kohl J,Lombaers C, Moretti A, Bandyopadhyay R,Somma S,Kastelein P. Analysis of microbial taxonomicalgroups present in maize stalks suppressive to colonizationby toxigenic Fusarium spp.:A strategy for the identifica-tion of potential antagonists[J]. Biological Control,2015,83:20-28. doi:10. 1016/j. biocontrol. 2014. 12. 007.
    [6] Yang Q,Yin G,Guo Y,Zhang D,Chen S,Xu M. Amajor QTL for resistance to Gibberella stalk rot in maize[J]. Theoretical and Applied Genetics,2010,121(4):673-687. doi:10. 1007/s00122-010-1339-0.
    [7] Gai X T,Xuan Y H,Gao Z G. Diversity and pathogenici-ty of Fusarium graminearum species complex from maizestalk and ear rot strains in Northeast China[J]. Plant Pa-thology,2017,66(8):1267-1275. doi:10. 1111/ppa.12670.
    [8] Li Y Q,Sun R Y,Yu J,Saravanakumar K A. Antagonis-tic and biocontrol potential of Trichoderma asperellumZJSX5003 against the maize stalk rot pathogen Fusariumgraminearum[J]. Indian Journal of Microbiology,2016,56(3):318-327. doi:10. 1007/s12088-016-0581-9.
    [9] Reid L M,Zhu X,Ma B L. Crop rotation and Nitrogeneffects on maize susceptibility to Gibberella(Fusariumgraminearum)ear rot[J]. Plant and Soil,2001,237(1):1-14. doi:10. 1023/A:1013311703454.
    [10] Lin Y,Zhao Z,Zhou S,Liu L,Kong W,Chen H,Long W,Feng Z,Jiang L,Wan J. Top bending pani-cle1 is involved in brassinosteroid signaling and regu-lates the plant architecture in rice[J]. Plant Physiologyand Biochemistry,2017,121:1-13. doi:10. 1016/j.plaphy. 2017. 10. 001.
    [11] Thussagunpanit J,Jutamanee K,Homvisasevongsa S,Suksamrarn A,Yamagami A,Nakano T,Asami T.Characterization of synthetic ecdysteroid analogues asfunctional mimics of brassinosteroids in plant growth[J]. The Journal of Steroid Biochemistry and MolecularBiology,2017,172:1-8. doi:10. 1016/j. jsbmb. 2017.05. 003.
    [12] Zeng Y H,Yu-Ping Z,Xiang J,Wu H,Chen H Z,Zhang Y K,Zhu D F. Effects of chilling tolerance in-duced by spermidine pretreatment on antioxidative activ-ity,endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings[J]. Journal of IntegrativeAgriculture,2016,15(2):295-308. doi:10. 1016/S2095-3119(15)61051-6.
    [13] Chaiwanon J,Wang Z Y. Spatiotemporal brassinosteroidsignaling and antagonism with auxin pattern stem celldynamics in Arabidopsis roots[J]. Current Biology,2015,25(8):1031-1042. doi:10. 1016/j. cub. 2015.02. 046.
    [14] Kim S K,Chang S C,Lee E J,Chung W S,Kim Y S,Hwang S,Lee J S. Involvement of brassinosteroids in thegravitropic response of primary root of maize[J]. PlantPhysiology,2000,123(3):997-1004. doi:10. 1104/pp. 123. 3. 997.
    [15] Ahammed G J,He B B,Qian X J,Zhou Y H,Shi K,Zhou J,Yu J Q,Xia X J. 24-Epibrassinolide alleviatesorganic pollutants-retarded root elongation by promotingredox homeostasis and secondary metabolism in Cucumissativus L.[J]. Environmental Pollution,2017,229:922-931. doi:10. 1016/j. envpol. 2017. 07. 076.
    [16] Wang X,Teng Y,Zhang N,Christie P,Li Z,Luo Y,Wang J. Rhizobial symbiosis alleviates polychlorinatedbiphenyls-induced systematic oxidative stress via brassi-nosteroids signaling in alfalfa[J]. The Science of the To-tal Environment,2017,592:68-77. doi:10. 1016/j. sci-totenv. 2017. 03. 066.
    [17] Rahman T,Divi U,Krishna P. Genes involved in bras-sinosteroid-mediated abiotic stress tolerance[J]. Journalof Biotechnology,2010,150(1):S112. doi:10. 1016/j.jbiotec. 2010. 08. 289.
    [18] Divi U K,Krishna P. Brassinosteroid:a biotechnologicaltarget for enhancing crop yield and stress tolerance[J].New Biotechnology,2009,26(3/4):131-136. doi:10.1016/j. nbt. 2009. 07. 006.
    [19] Zhou Y H,Xia X J,Yu G B,Wang J T,Wu J X,Wang M M,Yang Y X,Shi K,Yu Y L,Chen Z X,Gan J,Yu J Q. Brassinosteroids play a critical role inthe regulation of pesticide metabolism in crop plants[J]. Scientific Reports,2015,5:9018. doi:10. 1038/srep09018.
    [20] Xia X J,Zhang Y,Wu J X,Wang J T,Zhou Y H,ShiK,Yu Y L,Yu J Q. Brassinosteroids promote metabo-lism of pesticides in cucumber[J]. Journal of Agricultur-al and Food Chemistry,2009,57(18):8406-8413. doi:10. 1021/jf901915a.
    [21] De Bruyne L,Hofte M,De Vleesschauwer D. Connect-ing growth and defense:the emerging roles of brassinos-teroids and gibberellins in plant innate immunity[J].Molecular Plant,2014,7(6):943-959. doi:10. 1093/mp/ssu050.
    [22] Chang K S,Jeon H,Seo S,Lee Y,Jin E. Improvementof the phosphoenolpyruvate carboxylase activity of Phae-odactylum tricornutum PEPCase 1 through protein engi-neering[J]. Enzyme and Microbial Technology,2014,60:64-71. doi:10. 1016/j. enzmictec. 2014. 04. 007.
    [23] Xia X J,Huang L F,Zhou Y H,Mao W H,Shi K,WuJ X,Asami T,Chen Z,Yu J Q. Brassinosteroids pro-mote photosynthesis and growth by enhancing activationof Rubisco and expression of photosynthetic genes in Cu-cumis sativus[J]. Planta,2009,230(6):1185-1196.doi:10. 1007/s00425-009-1016-1.
    [24] Daloso D M,Antunes W C,Pinheiro D P,Waquim JP,Araújo W L,Loureiro M E,Fernie A R,Williams TC. Tobacco guard cells fix CO2by both Rubisco andPEPcase while sucrose acts as a substrate during light-induced stomatal opening[J]. Plant Cell&Environ-ment,2015,38(11):2353-2371. doi:10. 1111/pce.12555.
    [25]李涛涛,高永峰,马瑄,陈永富,王阳,马金彪.外源油菜素内酯对三种杨树在干旱、盐和铜胁迫下光合生理的影响[J].基因组学与应用生物学,2016,35(1):218-226. doi:10. 13417/j. gab. 035. 000218.Li T T,Gao Y F,Ma X,Chen Y F,Wang Y,Ma J B.Effect of exogenous brassinosteroid on photosynthesis ofthree spesies of populous under drought,salt and copperstress[J]. Genomics and Applied Biology,2016,35(1):218-226. doi:10. 13417/j. gab. 035. 000218.
    [26] Zhang M C,Zhai Z X,Tian X L,Duan L S,Li Z H.Brassinolide alleviated the adverse effect of water deficitson photosynthesis and the antioxidant of soybean(Gly-cine max L.)[J]. Plant Growth Regulation,2008,56(3):257-264. doi:10. 1007/s10725-008-9305-4.
    [27]路文静,李奕松.植物生理学实验教程[M].北京:中国林业出版社,2012:34-42.Lu W J,Li Y S. Experimental course of plant physiolo-gy[M]. Beijing:China Forestry Publishing House,2012:34-42.
    [28] Bend S. Brassinosteroids-bioactivity and crop productivi-ty[J]. Journal of Plant Physiology,2004,161(11):1286-1287. doi:10. 1016/j. jplph. 2004. 05. 007.
    [29] Wang Q S,Tian X Y,Jiang Q,Xu G C. Effects of bras-sinosteroids on the yield and quality of machine-trans-planted hybrid rice[J]. Field Crops Research,2016,33:473-479. doi:10. 1016/j. fcr. 2016. 02. 016.
    [30] Nakashita H,Yasuda M,Nitta T,Asami T,Fujioka S,Arai Y,Sekimatal K,Takatsuto S,Yamaguchi I,YoshidaS. Brassinosteroid functions in a broad range of diseaseresistance in tobacco and rice[J]. The Plant Journal,2003,33(5):887-898. doi:10. 1046/j. 1365-313X.2003. 01675. x.
    [31] Kanwar M K,Bhardwaj R. Arsenic induced modulationof antioxidative defense system and brassinosteroids inBrassica juncea L.[J]. Ecotoxicology and Environmen-tal Safety,2015,115:119-125. doi:10. 1016/j. eco-env. 2015. 02. 016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700